NATÁLIA AMARAL AMBRÓSIO

INTERCORRÊNCIA DA LEUCOSE ENZOÓTICA BOVINA E MASTITE EM VACAS LEITEIRAS NATURALMENTE INFECTADAS

LAVRAS-MG

2015
NATÁLIA AMARAL AMBRÓSIO

INTERCORRÊNCIA DA LEUCOSE ENZOÓTICA BOVINA E
MASTITE EM VACAS LEITEIRAS NATURALMENTE INFECTADAS

Dissertação apresentada à
Universidade Federal de Lavras,
como parte das exigências do
Programa de Pós-Graduação em
Ciências Veterinárias, área de
concentração em Sanidade Animal,
para a obtenção do título de Mestre.

Orientador
Dr. Geraldo Márcio da Costa

Coorientadores
Dr. Christian Hirsch
Dr. Francisco Duque de Mesquita Neto

LAVRAS-MG
2015
Ficha catalográfica elaborada pelo Sistema de Geração de Ficha Catalográfica da Biblioteca Universitária da UFLA, com dados informados pelo(a) próprio(a) autor(a).

|---|
NATÁLIA AMARAL AMBRÓSIO

INTERCORRÊNCIA DA LEUCOSE ENZOÓTICA BOVINA E MASTITE EM VACAS LEITEIRAS NATURALMENTE INFECTADAS

Dissertação apresentada à Universidade Federal de Lavras, como parte das exigências do Programa de Pós-Graduação em Ciências Veterinárias, área de concentração em Sanidade Animal, para a obtenção do título de Mestre.

APROVADA em 27 de fevereiro de 2015.
Dra. Ana Paula Peconick UFLA
Dr. Christian Hirsch UFLA
Dr. João Batista Ribeiro EMBRAPA

Orientador
Dr. Geraldo Márcio da Costa

Coorientador
Dr. Francisco Duque de Mesquita Neto

LAVRAS-MG
2015
DEDICO

Aos meus pais, Edson e Iliana; ao meu noivo, Gustavo e a todos os animais que participaram deste estudo.
AGRADECIMENTOS

A Deus, pelas oportunidades, pela paciência e compreensão dos caminhos seguidos, força para a superação dos obstáculos e evolução pessoal e profissional.

À Universidade Federal de Lavras (UFLA) e ao Departamento de Medicina Veterinária (DMV), por possibilitar a realização do meu trabalho.

À Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES), pela concessão da bolsa de estudos.

Ao meu orientador, Geraldo Márcio da Costa, pelo apoio, compreensão e paciência.

Ao meu coorientador e querido amigo, Christian Hirsch, por toda colaboração, conselhos e por ser um profissional e uma pessoa admirável.

À técnica do Laboratório de Microbiologia Veterinária, Dirécia Aparecida da Costa Custódio por toda ajuda, amizade e boas risadas!

Ao Setor de Patologia Veterinária, em especial à mestranda Pâmela Aparecida de Lima e ao professor Djeison Lutier Raymundo, por permitirem a utilização de informações do caso clínico de LEB.

Ao técnico do Laboratório de Hematologia, Cássio Ribeiro Gomide; à residente em patologia clínica, Cleibiane Evangelista Franco Borges e ao técnico Daniel Martimiano, por terem me ensinado e auxiliado com tanta paciência e boa vontade.

Aos professores e servidores do DMV, pela contribuição em minha formação, disponibilidade e apoio.

Ao colega de departamento, Fabio Raphael Pascoti Bruhn, pelo suporte estatístico e por ser sempre acessível.
Às colegas e amigas de pós-graduação Camila Prado Lenzi, Glei dos Anjos de Carvalho Castro, Juliana Rosa da Silva e Michele Placedino Andrade, pelo apoio e o compartilhamento de experiências.

À bolsista de iniciação científica Thairinc Gomides Castro, por toda amizade e, principalmente, por não ter tempo ruim!

Aos estagiários do Laboratório de Microbiologia Veterinária, em especial Agostinho, André e Rodrigo, que contribuíram para a realização deste trabalho.

Aos integrantes do Grupo UFLALEITE que sempre se prontificaram, com boa vontade, a me ajudar.

Aos médicos veterinários que auxiliaram no contato com as fazendas participantes do projeto, Beto, Gil, Gilson, Paulo, Ramon e Welkyer, e a todos os funcionários das fazendas, por toda a colaboração, paciência e atenção.

Aos meus pais, Edson Ambrósio e Iliana Amaral Ambrósio, e familiares, por todo apoio e compreensão por esses anos de ausência.

Ao meu noivo e companheiro, Gustavo Boldorini, por todo amor, paciência, cooperação com meu trabalho e, principalmente, por deixar a vida mais doce.
RESUMO

A infecção pelo vírus da leucose enzoótica bovina (BLV) nos bovinos afeta o sistema imunológico e está associada à maior tendência ao desenvolvimento de doenças infecciosas. Nesse sentido, a infecção é relacionada com maior incidência de mastite que, por sua vez, é importante doença na economia da pecuária leiteira. Esta dissertação foi realizada com o objetivo de avaliar a correlação entre a mastite e a infecção pelo BLV, na realidade de produção da mesorregião do Campo das Vertentes do estado de Minas Gerais, Brasil. Realizou-se a investigação da prevalência do BLV, por meio de sorologia utilizando a IDGA, em todas as vacas em lactação de dez propriedades, num total de 1.392 animais. Posteriormente, classificaram-se animais em grupos de casos e controles (87 controles e 160 casos), nos quais animais soronegativos ao BLV foram controle. Os casos, vacas soropositivas, foram selecionados em função da homologia da situação produtiva com um controle. Foram realizadas coletas com intervalo de 30 dias, divididas em D0, D30, D60 e D90. Ao final das análises, os animais foram classificados em três grupos: SN, SL e LP. Foram realizadas duas avaliações da sanidade das glândulas mamárias de todos os animais participantes dessa seleção, em D0 e D60, por meio do CMT e bacteriologia. Verificou-se a presença do BLV em 100% dos rebanhos avaliados, com prevalência geral de 80,89%. Os animais controle formaram o grupo SN e os soropositivos ao BLV foram classificados em LP e SL. Segundo a chave hematológica de Beindixen (1958), observaram-se 74% de SL e 26% de LP. Em D0 foram observados 48,98% de prevalência de mastite subclínica e 3,24% de mastite clínica e, em D60, a prevalência de mastite subclínica foi de 54,65% e a mastite clínica representou 5,67%. Na bacteriologia foram isolados 311 microrganismos, tendo os contagiosos representado 61,41% e os patógenos ambientais, 38,59%. Observou-se diferença significativa entre as categorias SN e SL e a incidência da mastite clínica (p = 0,047). Embora tenha sido detectada a associação entre a mastite clínica e a condição nosológica SN e SL, no presente trabalho não foi possível afirmar que a condição SL é um fator de proteção ou de risco. Não houve correlação significativa (p>0,05) entre a mastite subclínica e a condição nosológica dos animais, assim como a origem do agente causador da mastite (ambiental ou contagioso).

ABSTRACT

The infection with Bovine Leukosis - BLV in cattle affects the immune system and is associated with increased tendency to develop infectious diseases. In this sense the infection is related to a higher incidence of mastitis which in turn is an important disease in the dairy farming economy. This work aimed to evaluate the correlation between mastitis and infection BLV, within the reality of production mesoregion Field of Strands of Minas Gerais, Brazil. Was performed to investigate the prevalence of BLV through serology using AGID in all ten lactating cows properties, a total of 1392 animals. Later classified Pets in groups of cases and controls (87 controls and 160 cases), in which seronegative animals to BLV were controls. Cases, seropositive cows were selected based on their homology productive situation with a control. Collections were made at intervals of 30 days divided into D0, D30, D60 and D90. At the end of the analysis the animals were classified into three groups: SN; SL and LP. Two evaluations were performed sanity of the mammary glands of all the animals covered by this selection, on days D0 and D60, through the CMT and bacteriology. It is the presence of the BLV evaluated in 100% of herds with overall prevalence of 80.89%. Control animals formed the SN group, and seropositive to BLV were classified as LP and SL according to haematological key Beindixen (1958), there was 74% SL and 26% of LP. D0 were observed in 48.98% prevalence of subclinical mastitis and 3.24% of clinical mastitis, and D60 the prevalence of subclinical mastitis was 54.65% and clinical mastitis represented 5.67%. In Bacteriology 311 microorganisms were isolated, representing 61.41% of the contagious and environmental pathogens represented 38.59%. A significant difference between the SN and SL categories and the incidence of clinical mastitis (p = 0.047). Although it was detected the association between clinical mastitis and the nosological condition SN and SL in the present work was not possible to say whether the condition SL is a protective factor or risk. There was no significant correlation (p> 0.05) between subclinical mastitis and the nosological status of animals as well as the source of the causative agent of mastitis (environmental or contagious).

Keywords: Mastitis. Disease. Milk. BLV. Bacteriology.
LISTA DE ILUSTRAÇÕES

Figura 1. Vaca clinicamente acometida pela LEB, apresentando paresia dos membros posteriores e aumento de volume na coluna vertebral entre a penúltima e a última vértebra torácica (seta). Setor de Patologia Veterinária, DMV – UFLA ...52

Figura 2. Massa tumoral localizada na região lombar em animal acometido pela LEB. Setor de Patologia Veterinária, DMV – UFLA..52

Quadro 1. Estudos de prevalências de mastite clínica e subclínica realizados em diversos estados do Brasil...17

Quadro 2. Estudos de prevalências da LEB realizados em diversos estados do Brasil..26
LISTA DE TABELAS

Tabela 1 Frequências absolutas e prevalências da infecção pelo BLV em vacas em idade reprodutiva, distribuídas por município avaliado.49
Tabela 2 Distribuição das prevalências do BLV em relação ao número de partos em propriedades da Mesorregião do Campo das Vertentes50
Tabela 3 Prevalência do BLV e taxa de soroconversão dos animais controles no rebanhos avaliados na Mesorregião do Campo das Vertentes55
Tabela 4 Número de amostras de leite coletadas em D0 e D60 classificadas quanto à condição nosológica dos animais...57
Tabela 5 Número de microrganismos isolados de acordo com o escore do CMT e a condição nosológica dos animais...58
Tabela 6 Frequência dos microrganismos isolados em D0 e D60, classificados de acordo com a condição nosológica dos animais.........................59
Tabela 7 Frequências absolutas e relativas da mastite clínica e as condições nosológicas SN e SL...63
LISTA DE ABREVIAÇÕES E SIGLAS

<table>
<thead>
<tr>
<th>Abreviação</th>
<th>Significado</th>
</tr>
</thead>
<tbody>
<tr>
<td>CMT</td>
<td>California Mastitis Test</td>
</tr>
<tr>
<td>D0</td>
<td>Dia 0</td>
</tr>
<tr>
<td>D30</td>
<td>Dia 30</td>
</tr>
<tr>
<td>D60</td>
<td>Dia 60</td>
</tr>
<tr>
<td>D90</td>
<td>Dia 90</td>
</tr>
<tr>
<td>LP</td>
<td>Linfocitose persistente</td>
</tr>
<tr>
<td>SN</td>
<td>Soronegativo</td>
</tr>
<tr>
<td>SL</td>
<td>Sem linfocitose</td>
</tr>
<tr>
<td>ICTV</td>
<td>International Commite of Taxonomy of Viruses</td>
</tr>
<tr>
<td>NMC</td>
<td>National Mastitis Council</td>
</tr>
</tbody>
</table>
SUMÁRIO

1 INTRODUÇÃO...6
2 REFERENCIAL TEÓRICO ...7
 2.1 Imunidade da glândula mamária..7
 2.2 Mastite...13
 2.2.1 Etiologia..14
 2.2.2 Epidemiologia ..16
 2.2.3 Diagnóstico ...17
 2.2.4 Controle ..20
 2.3 Leucose Enzoótica Bovina ..22
 2.3.1 Etiologia...23
 2.3.2 Epidemiologia ..24
 2.3.3 Patogenia ..30
 2.3.4 Diagnóstico ...35
 2.3.5 Controle ..37
 2.4 Imunodepressão pelo BLV e predisposição para outras infecções ..38
3 OBJETIVO GERAL ..41
 3.1 Objetivos específicos ...41
4 MATERIAL E MÉTODOS ...42
 4.1 Local do estudo ...42
 4.2 Triagem ...42
 4.2.1 Sorologia ..42
 4.3 Formação dos grupos de casos e controles ..43
 4.3.1 Fluxograma de coletas ..43
 4.3.2 Análise hematológica ...44
 4.3.3 California mastitis test ..45
 4.3.4 Análise bacteriológica do leite ..46
4.4 Análise estatística ..47
5 RESULTADOS E DISCUSSÃO ..48
5.1 Triagem dos rebanhos e prevalências do BLV ...48
5.2 Relato de caso clínico de LEB ...51
5.3 Estudos dos animais casos e controles...53
5.3.1 Soroconversão dos animais controles ...54
5.3.2 Prevalência da mastite e principais microrganismos isolados56
5.3.3 Intercorrência entre a mastite e a infecção pelo BLV63
6 CONCLUSÃO ..65
 REFERÊNCIAS ...66
1 INTRODUÇÃO

O Brasil ocupa a quinta posição entre os principais produtores de leite no mundo, atrás somente de União Europeia, Estados Unidos, Índia e China, com produção de 34,255 bilhões de litros. Minas Gerais foi o estado responsável por 27,2% da produção nacional de leite em 2011(INSTITUTO BRASILEIRO DE GEOGRAFIA E ESTATÍSTICA - IBGE, 2011).

A mastite é considerada a principal doença que afeta os rebanhos leiteiros no mundo (SINHA; THOMBARE; MONDAL,, 2014). Essa doença proporciona as maiores perdas econômica na exploração de bovinos leiteiros, em virtude do alto descarte de leite de animais clinicamente acometidos pela doença e em tratamento, da diminuição da produção e da qualidade do leite e do descarte precoce de animais cronicamente afetados.

A leucose enzoótica bovina (LEB) é uma doença infectocontagiosa e seu agente etiológico é um deltaretrovírus, o bovine leukemia virus (BLV) (INTERNATIONAL COMMITTEE OF TAXONOMY OF VIRUSES - ICTV, 2015). Sua maior prevalência ocorre em bovinos leiteiros e gera impacto econômico em decorrência de diversos fatores, como descarte prematuro ou morte de animais que apresentam linfoma, custos com diagnóstico e tratamento das complicações, condenação de carcaças em frigoríficos, perdas nas exportações para mercados que exigem animais livres da doença e redução na produtividade leiteira.

A infecção pelo BLV afeta o sistema imunológico dos animais e seu impacto sobre a saúde do rebanho e a economia pode ser mais extenso do que as perdas diretas geradas pelo desenvolvimento do linfoma (TRAININ; BRENNER, 2005). Emanuelson et al. (1992) verificaram que animais BLV positivos apresentavam maior tendência ao desenvolvimento de doenças

Nesse contexto, o presente trabalho foi realizado com o objetivo de avaliar a correlação entre a mastite e a infecção pelo BLV, uma vez que esta infecção interfere na resposta imune do animal infectado, podendo predispor a infecções secundárias, facilitando, assim, o estabelecimento da mastite.

2 REFERENCIAL TEÓRICO

2.1 Imunidade da glândula mamária

A imunidade da glândula mamária é definida como a proteção e a resistência às doenças infecciosas neste órgão, por meio da variedade de fatores imunes presentes no animal (OVIDO-BOYSO et al., 2007). A resposta imune é caracterizada pelo conjunto de reações celulares e moleculares estabelecidas pelos elementos do sistema imune, frente a um estímulo endógeno ou exógeno cujo padrão molecular, ou antigênico, difira do natural fisiológico do indivíduo. A resposta imune é baseada na capacidade de reconhecer e discriminar substâncias estranhas entre aquelas do próprio corpo, em âmbito molecular ou submolecular (SORDILLO; STREICHER, 2002).

Pode-se classificar a imunidade na glândula mamária, como em outros sistemas, em inata e adaptativa. A imunidade inata é predominante durante os estágios iniciais da infecção e é representada por barreiras anatômicas e físico-químicas, bem como elementos solúveis e celulares. Tal resposta está presente ou é ativada rapidamente no local que sofreu agressão. Numerosos estímulos a desencadeiam e ela não aumenta de intensidade pela exposição repetida ao mesmo agente agressor (CARNEIRO; DOMINGUES; VAZ, 2009).
A resposta inata da glândula mamária é mediada por barreiras físicas e químicas do teto, além de células, tais como macrófagos, neutrófilos, células natural killer (NK), além de muitos fatores solúveis diluídos nos líquidos intercelulares. Estes últimos são representados por moléculas de comunicação (citocinas), de quimiotaxia (quimiocinas) e inúmeras proteínas de fase aguda ou peptídeos com ação moduladora de resposta imune ou microbicida direta (SORDILLO; SHAFER-WEAVER; DEROZA, 1997).

O esfincter do teto é considerado a primeira linha de defesa contra mastite, uma vez que este é o caminho pelo qual patógenos invasores podem ganhar entrada para a glândula mamária. O esfincter mantém o fechamento do teto entre as ordenhas e dificulta a penetração bacteriana. O aumento da permeabilidade do esfincter está diretamente relacionado ao aumento da incidência de mastites. O canal do teto contém queratinina, que é fundamental para a manutenção da função de barreira química da extremidade do teto (SORDILLO; STREICHER, 2002). Ácidos graxos esterificados e não esterificados (mirístico, palmitoleico e linoleico), associados a esta queratinina, desempenham função bacteriostática (OVIEDO-BOYSO et al., 2007). Proteínas catiónicas também colaboram com a proteção da glândula mamária, desempenhando um efeito bactericida, ligando-se eletrostaticamente aos microrganismos, alterando suas paredes celulares, tornando-os suscetíveis à pressão osmótica do meio (HOGAN et al., 1988).

A maioria das infecções intramamárias resulta da superação da barreira anatômica e físico-química do canal do teto pelas bactérias. Uma vez dentro da cisterna do teto, as bactérias aderem, multiplicam-se e se estabelecem como infecção no tecido da glândula mamária, se a resposta imune inata for inadequada ou a virulência for elevada (WELINITZ; BRUCKMAIER, 2012).

A migração de leucócitos para a glândula mamária é um dos mais importantes mecanismos de defesa natural contra a mastite. Os leucócitos e as
células epiteliais presentes na glândula mamária são chamadas de células somáticas e desempenham papel importante na imunidade contra agentes infecciosos (COSTA, 2008). As células somáticas estão em concentrações menores de 200.000 células/ml no leite de glândulas não infectadas e representam a maioria das células que compõem a contagem de células presentes no leite. Patógenos invasores podem levar a um aumento significativo do número de leucócitos, chegando a atingir concentrações de milhões/ml, mesmo em casos de mastite subclínica. A grande maioria dos leucócitos do leite durante a inflamação é de leucócitos polimorfonucleares (PMN), ou neutrófilos, que entram na glândula mamária através do endotélio vascular, vindos junto com o sangue. Outros tipos de leucócitos no úbere são linfócitos e macrófagos (NATIONAL MASTITIS COUNCIL - NMC, 1996).

No curso normal de infecção por microrganismos pouco virulentos, o crescimento destes é inibido, principalmente, pelos neutrófilos, que são recrutados em grande número. Essas células fagocitam e matam microrganismos invasores dentro de seus fagolisossomos, por meio da ação de radicais derivados do oxigênio, tais como superóxido, hipoclorito e peróxido de hidrogênio. Além disso, enzimas hidrolíticas e outros fatores de defesa solúveis, tais como lisozima e defensinas, atuam lisando os microrganismos. Finalmente, destaca-se a ação de privação nutricional da lactoferrina, que prejudica o metabolismo dependente de íons Fe++, principalmente das bactérias (WELLNITZ; BRUCKMAIER, 2012).

Diferentes fatores solúveis têm atividade microbicida, mas três grupos se destacam: fatores que lisam a membrana celular microbiana (ex. sistema complemento), proteínas que se ligam a elementos essenciais aos patógenos, como ferro (ex. lactoferrina) e enzimas que hidrolisam estruturas microbianas (ex. lisozima) (CARNEIRO; DOMINGUES; VAZ, 2009).
O sistema complemento é um importante componente da imunidade inata, visto que alguns fatores estão intimamente envolvidos no processo de inflamação e participam na eliminação de microrganismos diretamente ou pela integração com células fagocíticas (KEHRLI; HARP, 2001). Bactérias gram-negativas são sensíveis à ação lítica do complemento, enquanto as gram-positivas são mais resistentes, porém, ambas são sensíveis à ação opsonizante de C3 e C3b (OVIEDO-BOYSO et al., 2007).

Para a maioria das bactérias patogênicas, o íon ferro é um cofator do metabolismo. Assim, a lactoferrina atua restringindo o crescimento bacteriano ao tornar o ferro indisponível na glândula mamária (CARNEIRO; DOMINGUES; VAZ, 2009). A lisozima é produzida pelas células epiteliais e leucócitos; é uma proteína bactericida que hidrolisa os peptideoglicanos da parede celular das bactérias, resultando em lise celular (RAINARD; RIOLET, 2006).

Para a ação do ramo inato do sistema imune é fundamental sua capacidade de reconhecer padrões moleculares atípicos que ocorrem na superfície dos microrganismos ou em moléculas por eles liberadas no meio intercelular. Esses padrões são conhecidos genericamente pela sigla PAMP, do inglês pathogen-associated molecular patterns, ou padrão molecular associado a patógenos. O reconhecimento dos PAMPs é feito graças à existência de receptores celulares especializados denominados pattern recognition receptors, PRRs, ou receptores reconhecedores de padrão, que se distinguem pela especificidade do ligante, a localização celular e as vias de sinalização. Também colaboram nesse processo moléculas solúveis reconhecedoras de padrão microbiano, que posteriormente são reconhecidas pelos fagócitos e outras células do sistema imune, junto com o patógeno (ABBAS; LITCHMAN; PILLAI, 2012).
Existem inúmeros PAMPs já conhecidos de bactérias e fungos, que são os dois principais grupos de patógenos envolvidos na patogênia das mastites. Para as bactérias gram-negativas destacam-se os PAMPs LPS (lipopolissacáride de parede celular), lipoproteínas de membrana externa, porinas e proteínas com terminações externas em N-formilmetionina. Para as bactérias móveis também é importante a proteína flagelina, que compõe os flagelos. Já nas bactérias gram-positivas são relevantes as moléculas da estrutura da parede peptidoglicano, ácido teicico e lipoteicoico (ABBAS; LITCHMAN; PILLAI, 2012; MOGENSEN, 2009).

Os fungos leveduriformes, os mais encontrados infectando a glândula mamária de bovinos, têm PAMPs particulares e diferenciados das bactérias. Nesses organismos se destacam o zymosan (composto por suas múltiplas estruturas de beta-glucanos), os glicolípidos e as moléculas de ácido lipoteicoico. A quitina, formada pelo polímero de N-acetilglicosamina, também pode atuar como PAMP de fungos (BAIN et al., 2014; VEERDONK et al., 2008).

Nos três grupos de patógenos, bactérias gram-negativas, gram-positivas e fungos leveduriformes, ocorrem alguns PAMPs comuns aos três. Destacam-se, nesse contexto, a sinalização pobre em ácido siálico observada nas terminações externas das proteínas de superfície e a elevada frequência do açúcar manose na estrutura de suas paredes. Estes e os demais PAMPs são reconhecidos por uma diversidade de PRRs, dos quais se destacam a família toll-like receptors (TLR). Além desses, são importantes PRRs MBL receptor (receptor de manose), scavenger receptor (receptor de varredura), CD16 e CD32 (receptores de anticorpos), receptor RC1 para molécula C3b do complemento (que se fixa em superfícies pobres em ácido siálico), receptor de N-formilglicosamina, receptor signaling pattern-recognition e o receptor Dectina-1, importante no
reconhecimento de beta-glucanos de fungos (ABBAS; LITCHMAN; PILLAI, 2012; MURPHY; TRAVERS; WALPORT, 2010).

Além dos PRRs encontrados nos leucócitos, fatores solúveis existentes no plasma sanguíneo são importantes marcadores da presença de microrganismos, graças à sua capacidade de se ligarem aos PAMPs. Esses elementos são produzidos no fígado e alcançam as áreas de mastite graças ao aumento de permeabilidade vascular decorrente da inflamação. As proteínas da família das pentraxinas, proteína amiloide sérica e proteína C reativa, são capazes de se ligarem às terminações fosforilcolina de proteínas microbianas e, assim, desencadearem opsonização e ativação complementária. As proteínas colelectinas são capazes de se fixar em superfícies ricas em manose e lá atuarem como opsoninas para macrófagos e fixarem complemento pela via das lectinas ligadoras de manose (ABBAS; LITCHMAN; PILLAI, 2012; MURPHY; TRAVERS; WALPORT, 2010).

O sistema imune inato e o adaptativo interagem na tentativa de fornecer proteção contra microrganismos causadores da mastite. A resposta imunológica inata estimula a resposta imune adaptativa e influencia a sua natureza. Adicionalmente, a resposta imune adaptativa usa muitos mecanismos efetores da imunidade inata para eliminar microrganismos e sua ação frequentemente aumenta a resposta imune inata na atividade antimicrobiana. A eficiência destas respostas determina a susceptibilidade ou a resistência à infecção (OVIDO-BOYSO et al., 2007).

Imunoglobulinas (Ig) solubilizadas, efetoras da resposta imune adaptativa, são proteínas produzidas por linfócitos B ativados por antígeno que, subsequentemente, proliferam e se diferenciam em plasmócitos. Os anticorpos em secreções lácteas são sintetizados no local ou são seletivamente transportados ou transudados para o soro lácteo. São conhecidas quatro classes e subclasses de Ig, que têm ação na defesa da glândula mamária contra bactérias
causadoras de mastite. São elas: IgG₁, IgG₂, IgA e IgM. Cada uma destas classes se diferencia físico-química e biologicamente. As subclasses IgG₁, IgG₂ e classe IgM podem atuar como opsoninas bacterianas que aumentam a fagocitose de macrófagos e neutrófilos (SORDILLO; SHAFER-WEAVER; DEROsa, 1997).

2.2 Mastite

A mamite (do latim mammae) ou mastite (do grego mastos) bovina é definida como uma reação inflamatória do parênquima da glândula mamária que pode ser de natureza infectiosa, traumática ou tóxica (INTERNATIONAL DAIRY FEDERATION - IDF, 1987). Responsável por alterações físicas, químicas e bacteriológicas no leite e/ou alterações no tecido glandular (RADOSTITS et al., 2002).

A mastite é uma das principais enfermidades das vacas leiteiras, comprometendo a viabilidade de toda a cadeia produtiva do leite, afetando desde o produtor, passando pela indústria, até o consumidor final (HOGEVEEN, 2005; JAMROZIK; SCHAEFFER, 2012; MIRA et al., 2013; SINHA; THOMBARE; MONDAL, 2014). As perdas econômicas ocasionadas pela mastite devem-se a diversos fatores, tais como diminuição da produção, custos com mão de obra, honorários profissionais, gastos com medicamentos, morte ou descarte precoce de animais e queda na qualidade do produto final (HOGEVEEN, 2005; LANGONI et al., 1998; RIBEIRO et al., 2003). Além dos grandes prejuízos econômicos, gerados pela redução na produção e na qualidade do leite dos quartos mamários afetados, interfere no processo industrial de derivados lácteos (HILLERTON, 1996).

A perda de produção pode ser drástica, especialmente quando infecta uma porcentagem significativa do rebanho, podendo reduzir em até 15% a produção de leite por vaca afetada (LADEIRA, 2007).
Além das implicações financeiras da mastite, há também a importância desta em saúde pública. O uso extensivo de antibióticos no tratamento e no controle da mastite tem possíveis implicações para a saúde humana, pelo aumento do risco de cepas resistentes a antibióticos e de bactérias emergentes, entrar na cadeia alimentar (WHITE; MCDERMOTT, 2001). O risco potencial de propagação de organismos zoonóticos pelo leite continua a ser um risco especialmente no mercado de produtos lácteos não pasteurizados, e durante falhas de pasteurização (BRADLEY, 2002).

2.2.1 Etiologia

A etiologia da mastite é complexa e multivariada, o que torna necessária a identificação dos microrganismos que causam a infecção da glândula mamária, tanto para o controle e a prevenção, quanto para o monitoramento de rebanhos (RIBEIRO et al., 2003). A mastite pode ser causada tanto por agentes patogênicos quanto por traumas ismos por manejo incorreto e inadequação de ordenhadeiras, entre outros fatores (BRADLEY, 2002; FERREIRA et al., 2007).

patógenos contagiosos, geralmente, ocasionam infecções crônicas e os patógenos ambientais provocam infecções de curta duração e agudas.

Agentes patogênicos contagiosos podem ser considerados organismos adaptados para sobreviver dentro do hospedeiro, em particular dentro da glândula mamária. Eles são capazes de estabelecer infecções subclínicas, as quais são tipicamente manifestadas por elevação na contagem de células somáticas (CCS) (HOGAN et al., 1989). Em contraste, patógenos ambientais são descritos como invasores oportunistas da glândula mamária, não adaptados para a sobrevivência dentro do hospedeiro (BRADLEY, 2002).

A mastite pode se manifestar na forma clínica ou subclínica. O estado clínico depende, principalmente, dos fatores relacionados com a capacidade do microrganismo de lesar o parênquima glandular e do estado de defesa da glândula (RIBEIRO et al., 2006).

Na forma clínica da mastite existem sinais evidentes de inflamação, como o edema, o aumento de temperatura, o endurecimento e a dor na glândula mamária, e/ou o aparecimento de grumos, de pus ou qualquer alteração nas características do leite. A queda na produção de leite varia de acordo com o acometimento dos quartos mamários, podendo até levar à perda de função (HOGEVEEN, 2005).

Na forma subclínica, a produção de leite nos quartos afetados pode cair em até 40%, sem quaisquer sinais clínicos aparentes da mastite (HAMEED; SENDER; KORWIN-KOSSAKOWSKA, 2006). A forma subclínica predomina em cerca de 90% dos casos e pode representar de 70% a 80% dos custos (BELOTI et al., 1997). Ao contrário da forma clínica, não ocorrem mudanças visíveis no aspecto do leite ou do úbere. Os animais acometidos podem ser identificados por alterações na composição do leite, tais como aumento na contagem de células somáticas, aumento nos teores de proteínas séricas e diminuição nos teores de caseína, de lactose, de gordura e de cálcio do leite. Isso
faz com que haja menor rendimento na produção de seus derivados, além de diminuir o tempo de prateleira dos produtos (ANDRADE; HARTMANN; MASSON, 2009; DIAS, 2007).

2.2.2 Epidemiologia

Ribeiro et al. (2006) estimaram que a média de mastite clínica em fazendas produtoras de leite no Brasil era de, aproximadamente, 3% a 4%, e o objetivo de um correto controle de mastite era atingir níveis inferiores a 1%. Segundo estes mesmos autores, no caso da mastite subclínica, a média ficava em torno de 40%, e a meta era atingir valores inferiores a 15%. Estima-se que, para cada caso de mastite clínica, ocorrem 35 casos subclínicos, e estes acarretam um prejuízo estimado em 2,8 bilhões de litros de leite por ano, no Brasil (RIBEIRO JÚNIOR; BELOTTI, 2012). Segundo Costa (2008), os índices de mastites clínica e subclínica observados nos rebanhos brasileiros encontram-se muito distantes destes patamarces que seriam aceitáveis, considerando as implicações econômicas decorrentes da enfermidade.

Os índices de mastite clínica e subclínica variam muito entre rebanhos brasileiros (Quadro 1), em função da adoção das medidas de controle para a doença, do tipo de manejo adotado, do nível de tecnificação e dos critérios de bonificação praticados pelos laticínios e cooperativas.

Os principais fatores de risco para a ocorrência de mastite subclínica em vacas leiteiras, estudados por Coentrao et al. (2008), apontaram para o manejo inadequado, a inexistência de treinamento dos ordenhadores, a não utilização de serviços laboratoriais para a identificação dos patógenos e o uso de equipamentos de ordenha sem manutenção periódica. A identificação dos fatores de risco associados à mastite permite aprimorar os programas de controle e a prevenção da mastite dos rebanhos.
Quadro 1 Estudos de prevalências de mastite clínica e subclínica realizados em diversos estados do Brasil.

<table>
<thead>
<tr>
<th>Estado</th>
<th>Mastite clínica</th>
<th>Mastite subclínica</th>
<th>Referência</th>
</tr>
</thead>
<tbody>
<tr>
<td>NORTE</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Pará</td>
<td>4,6%</td>
<td>15,6%</td>
<td>Oliveira et al. (2011);</td>
</tr>
<tr>
<td>NORTESSTE</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Piauí</td>
<td>41,10%</td>
<td></td>
<td>Ferreira et al. (2007)</td>
</tr>
<tr>
<td>CENTRO-OESTE</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Mato Grosso</td>
<td>5,8%</td>
<td>65,0%</td>
<td>Martins et al. (2010)</td>
</tr>
<tr>
<td>SUDESTE</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Rio de Janeiro</td>
<td>-</td>
<td>40,4%</td>
<td>Vianni, Nader Filho e Langenegger (1992)</td>
</tr>
<tr>
<td>São Paulo</td>
<td>7,46%</td>
<td>63,68%</td>
<td>Bueno et al. (2002)</td>
</tr>
<tr>
<td>Minas Gerais</td>
<td>-</td>
<td>46,10%</td>
<td>Costa et al. (1999)</td>
</tr>
<tr>
<td>SUL</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Paraná</td>
<td>-</td>
<td>29,82%</td>
<td>Beloti et al. (1997);</td>
</tr>
<tr>
<td></td>
<td>-</td>
<td>43%</td>
<td>Pardo et al. (1999)</td>
</tr>
<tr>
<td></td>
<td>15,4%</td>
<td></td>
<td>Saab et al. (2014)</td>
</tr>
<tr>
<td>Rio Grande do Sul</td>
<td>1,22%</td>
<td>31,17%</td>
<td>Ribeiro et al. (2006)</td>
</tr>
</tbody>
</table>

1 Os autores não diferenciaram mastite subclínica e clínica

2.2.3 Diagnóstico

A detecção precoce de vacas com mastite é importante, pois possibilita o tratamento rápido, reduzindo as perdas de produção e aumentando as perspectivas de recuperação do animal acometido (SHARMA; PANDEY; SUDHAN, 2010). Além disso, o monitoramento de mastite é importante para se avaliar a eficiência dos modelos de controle implantados para a enfermidade no rebanho (COSTA, 2008).

O diagnóstico da mastite clínica pode ser realizado pela sintomatologia, como inflamação do úbere, secreção láctea com grumos, sangue e pus, entre outras secreções patológicas. Porém, para o diagnóstico da mastite subclínica, se faz necessária a utilização de exames complementares baseados no conteúdo celular do leite (DIAS, 2007; SOUZA et al., 2009).
A forma subclínica da enfermidade não promove sinais visuais de alteração do leite nem da glândula mamária, contudo, causa queda de produção dos quartos afetados e pode acarretar alterações no teor de gordura, extrato seco total, extrato seco desengordurado, conteúdo de casca e em outras características físico-químicas (ZAFALON et al., 2005), incluindo contagem de células somáticas, condutibilidade e dosagens de lactose, e cloretos. Estes parâmetros são comumente utilizados para a detecção da mastite subclínica (RIBEIRO JÚNIOR; BELOTTI, 2012).

O diagnóstico presuntivo da mastite subclínica pode ser realizado pela contagem direta ou indireta de células somáticas no leite. A CCS no leite é uma ferramenta importante no diagnóstico da mastite subclínica, aceita internacionalmente como medida padrão para determinar a qualidade do leite cru e, consequentemente, para monitorar a sanidade da glândula mamária além de ser o indicador mais usado em programas de controle e prevenção da mastite em todo o mundo (COENTRÃO et al., 2008; LANGONI et al., 2011).

As células somáticas presentes no leite são compostas, basicamente, por dois tipos de células principais, células de descamação do epitélio secretor e leucócitos de origem do sangue, as quais se apresentam com elevadas concentrações nos casos de mastite (RIBEIRO et al., 2003). Pode ser utilizado método direto de contagem celular, pelo exame eletrônico em aparelhos, ou indireto pelo CMT (SCHALM; NOORLANDER, 1957). O valor mínimo da CCS para se considerar um animal com mastite é de 200.000 células/ml, sendo este o ponto de triagem para designar a infecção da glândula mamária (COSTA, 2008).

Em condições de campo, o diagnóstico dessa forma de apresentação é feito, geralmente, pelo california mastitis test (CMT), podendo ser utilizado também o wisconsin mastitis test (WMT) (MIRA et al., 2013).
Sharma, Pandey e Sudhan (2010) avaliaram a eficácia de testes indiretos para o diagnóstico de mastite subclínica e verificaram que a CCS apresentou 91,94% e o CMT, 75,52% de acurácia na identificação de animais portadores de mastite subclínica. Segundo Laranja e Machado (1994), o CMT é um teste subjetivo e podem ocorrer variações na CCS em decorrência de fatores, tais como vaca, estádio de lactação e época do ano. Segundo Della Libera et al. (2011) e Sharma, Pandey e Sudhan (2010), o CMT é um instrumento de diagnóstico útil para triagem em rebanhos, pois é de fácil execução e de baixo custo.

Adicionalmente, Mira et al. (2013) verificaram que a CCS e o CMT poderiam ser utilizados como indicadores da presença de infecção intramamária, pois a concordância entre o exame bacteriológico e os valores logarítmicos de corte para a CCS e o CMT foram de moderados a altos. O WMT foi considerado como uma prova semelhante ao CMT, mas com menor confiabilidade, devendo ser restrita apenas à amostra de tanque. Porém, é por meio do exame bacteriológico do leite que será possível identificar corretamente o agente etiológico, permitindo, assim, determinar prováveis fontes de infecção (BELOTI et al., 1997).

Há, atualmente, disponível um kit comercial de PCR em tempo real quantitativo (qPCR), capaz de detectar até 16 patógenos causadores de mastite (PathoProof KingFisher Flex DNA Kit, Thermo Scientific, Finlândia). A sensibilidade do kit qPCR e a bacteriologia convencional foram estimadas em 89% e 77%, respectivamente (KOSKINEN et al., 2010). Embora qPCR tenha alta sensibilidade e curto tempo de resposta para os resultados, ele continua a ser um ensaio caro e complexo, em comparação com a bacteriologia. Além disso, qPCR é projetado para identificar DNA genômico em vez de células viáveis, e a relevância clínica desta diferença aguarda uma avaliação mais aprofundada sobre a viabilidade dos patógenos (MURAI et al., 2014).
2.2.4 Controle

Os programas de controle e prevenção da mastite têm por objetivo reduzir a prevalência dessa infecção e, dessa forma, diminuir as perdas econômicas (RIBEIRO JÚNIOR; BELOTTI, 2012). Os cálculos econômicos das perdas de produção e o conhecimento do componente de custo são essenciais na decisão do produtor para desenvolver mecanismo de controle (SINHA; THOMBARE; MONDAL, 2014).

Os programas clássicos de controle da mastite, introduzidos há várias décadas em rebanhos americanos e europeus, baseiam-se na desinfeção de tetos antes e após a ordenha, no tratamento precoce de casos clínicos, na terapia de vacas secas, na higiene do ambiente e da ordenha, na manutenção periódica do equipamento de ordenha e no descarte de animais cronicamente infectados (COSTA, 2008).

O controle de mastites ambientais depende, principalmente, da conscientização do produtor em relação à higiene tanto das instalações como da ordenha e manejo, pelo fato de os agentes estarem presentes no meio ambiente onde vive o animal (FERREIRA et al., 2007).

A ordenha mecânica, se indevidamente utilizada, pode causar trauma aos tecidos e à extremitade do teto, o que facilita a colonização por organismos causadores de mastite (SORDILLO; STREICHER, 2002). Portanto, a revisão periódica do equipamento de ordenha permite detectar e sanar oportunamente falhas que possam prejudicar seu funcionamento, eliminando, assim, uma das principais causas de mastite e de alterações na qualidade do leite (COSTA, 2008).

O tratamento de casos clínicos e a terapia de vacas secas são importantes métodos de controle para as mastites, no entanto, o uso indevido de antibióticos para eliminar patógenos da mastite pode tornar-se um problema de saúde
pública, devido à presença de resíduos no leite. Pouca informação está disponível sobre o efeito do tratamento de mastite em vacas sobre a saúde e o bem-estar humano. Portanto, é necessário garantir que o controle da mastite e que os procedimentos terapêuticos não tenham impacto negativo na segurança dos consumidores (HAMEED; SENDER; KORWIN-KOSSAKOWSKA, 2006).

Segundo Langoni (2013), para que a implantação de um programa de controle tenha sucesso, deve-se, além da atuação do veterinário, haver a sensibilização por parte do proprietário e, principalmente, dos ordenhadores. Sendo assim, são importantes a qualificação e as ações de educação sanitária junto aos funcionários, devendo ser de responsabilidade do veterinário, que tem condições de ensinar as práticas corretas, visando diminuir a presença de novas infecções intramamárias e à eliminação das existentes.

Coentrão et al. (2008) detectaram que mais de 70% das propriedades estudadas na Zona da Mata do estado de Minas Gerais não realizavam procedimentos fundamentais para a prevenção da mastite, tais como o tratamento do úbere na secagem, o exame dos primeiros jatos e a desinfecção dos tetos após a ordenha. Lopes et al. (2004) verificaram que cuidados com a obtenção higiênica do leite eram negligenciados por parcela significativa de produtores de leite, pois, ao fazerem o levantamento de todas as despesas operacionais efetivas em 16 propriedades leiteiras do sul de Minas Gerais, constataram que em 50% não houve nenhuma despesa com a aquisição de soluções pré e pós-dipping, detergentes ácidos e alcalinos, papel toalha, desinfetantes e demais produtos utilizados na ordenha.

Os gastos com a prevenção de mastite em vacas em lactação/ano geram um custo inferior ao proporcionado com o tratamento curativo de vacas em lactação/ano, levando-se em consideração a diminuição da produção, as perdas de leite decorrentes da utilização de antibióticos, além dos gastos com o tratamento e a mão de obra (DEMEU et al., 2011).
2.3 Leucose Enzoótica Bovina

A leucose enzoótica bovina (LEB) é uma doença viral causada por um retrovírus oncogênico denominado *bovine leukemia virus* (BLV), de distribuição cosmopolita, verificando-se as maiores prevalências em rebanhos leiteiros (FLORINS et al., 2008).

O primeiro relato da doença foi em 1871, na Lituânia, em um bovino que apresentava hiperтроfia de linfonodos superficiais e esplenomegalia. Após diversos relatos semelhantes, em 1917 demonstrou-se que a doença era causada por um agente infeccioso viral (RAVAZZOLLO; COSTA, 2007).

No Brasil, a LEB foi relatada, inicialmente, em 1943, por Rangel e Machado. Atualmente, está amplamente disseminada, especialmente em rebanhos leiteiros (RAJÃO et al., 2014).

O termo leucose enzoótica bovina é utilizado para descrever duas condições relacionadas aos bovinos: o linfoma, provavelmente a doença neoplásica mais comum do gado leiteiro (PANZIERA et al., 2014) e a linfocitose persistente, que é um aumento benigno e perdurável no número de linfócitos circulantes. No entanto, na maioria dos animais infectados, a infecção é inaparente e persistente (BRAGA; LAAN, 2001).

A LEB gera impacto econômico em decorrência de diversos fatores, como o descarte prematuro ou a morte de animais, os custos com diagnóstico e tratamento das complicações em animais que apresentam linfoma, a condenação de carcaças em frigoríficos, as perdas nas exportações para mercados que exigem animais livres da doença, a redução na produtividade leiteira (LEUZZI JUNIOR; ALFIERI; ALFIERI, 2001), assim como as barreiras ao comércio internacional de animais e de sêmen e embriões, em que a maior parte dos países importadores exige que os animais não estejam infectados (OFFICE INTERNATIONAL DES EPIZOOTIES - OIE, 2012). O Brasil também exige
sorologia negativa para os bovinos importados, por parte do Ministério da Agricultura, impedindo a compra e a entrada no país de animais sorologicamente positivos para o BLV, porém, não há nenhum programa oficial de controle da doença (BRAGA et al., 1997).

2.3.1 Etiologia

Em culturas de leucócitos, a partícula viral tende ao esférico e mede de 90 a 120 nm de diâmetro (LEUZZI JUNIOR; ALFIERI; ALFIERI, 2001). Tem duas cópias de RNA genômico composto por 8.714 nucleotídeos cada, do tipo cadeia simples que é empacotada na partícula viral. As proteínas p24 formam o capsídeo que contém o RNA viral em interação com nucleocapsídeo. Duas proteínas enzimáticas são também empacotadas no capsídeo, a transcriptase reversa e a integrase, necessárias para a transcrição reversa e a integração do genoma viral, respectivamente. A proteína da matriz p15 interliga o capsídeo e o
envelope exterior que é formado por uma bicamada lipídica de origem celular, em que um complexo de proteínas virais (gp51 e gp30) é inserido (COFFIN; HUGHES; VARMUS, 1997).

O genoma do BLV é composto pelos genes gag, pol e env. Na região 3’ do genoma há dois genes de regulação, tax e rex, que controlam a expressão viral. Estes genes são necessários para a replicação viral, tax regula transativação do long terminal repeat (LTR), ou terminação longa repetida, viral e rex influencia o processamento do RNA (COFFIN; HUGHES; VARMUS, 1997). O gene tax exerce significativo impacto sobre as funções celulares tão diversas como transcrição, tradução, processamento de RNA, transdução de sinal, crescimento celular, apoptose, resposta ao estresse e resposta imune. A interferência na regulação da resposta imune adaptativa, provavelmente, é uma estratégia para garantir a replicação viral em curso e a persistência viral, mesmo em face de uma forte resposta imune do hospedeiro (ARAINGA; TAKEDA; AIDA, 2012).

A glicoproteína gp51 do envelope do BLV é biologicamente muito importante, pois é responsável pela infectividade do vírus, que pode ser neutralizada por anticorpos anti-gp51. A sua ligação a um receptor celular específico é o passo inicial para a infecção viral das células (ALTANER et al., 1993; LEUZZI JUNIOR; ALFIERI; ALFIERI, 2001).

2.3.2 Epidemiologia

O BLV tem distribuição mundial e sua taxa de prevalência é variável nas regiões brasileiras, dependendo do estado. De forma característica, apresenta predominância em rebanhos leiteiros e baixas ocorrências em rebanhos de corte (BIRGEL JUNIOR et al., 2006; DEL FAVA; PITUCO, 2004; MEIRELLES et al., 2009). Segundo estes autores, a prevalência observada em rebanhos leiteiros
apresenta valores quatro a dez vezes maiores do que os obtidos em animais de corte. A taxa de infecção é significativamente maior nas fêmeas, atribuindo-se essa diferença ao tipo de manejo e ao maior isolamento a que são submetidos os machos, nos rebanhos leiteiros (BIRGEL JÚNIOR et al., 1995; MATOS; BIRGEL JUNIOR; BIRGEL, 2005).

A infecção pelo BLV ocorre com maior frequência em animais com mais de 24 meses de idade. Essa ocorrência não deve ser atribuída à maior susceptibilidade destes animais e, sim, ao maior tempo de permanência dos bovinos mais velhos nos rebanhos infectados e, por isso, submetidos à exposição prolongada ao vírus (MATOS; BIRGEL JUNIOR; BIRGEL, 2005; RAJÃO et al., 2012; TRAININ; BRENNER, 2005). Birgel Junior et al. (2006) observaram que, a partir dos seis meses de vida, o percentual de animais reagentes aumentou gradativamente e significativamente com o progredir da idade, passando de 1,07 %, no grupo etário formado por animais com idade entre 6 e 12 meses, para 13,52%, no gado com 48 a 72 meses de idade e atingindo nos animais acima de 72 meses de vida um percentual de 32,72%.

Maiores prevalências são observadas no gado leiteiro em decorrência do manejo mais intensivo, além de os animais serem submetidos a manipulações tecnológicas que, se mal aplicadas, facilitam a transmissão horizontal (principalmente, as formas iatrogênicas) ou vertical (transplacentária) do BLV (LEITE; LOBATO; CAMARGOS, 2001; MENDES et al., 2011).

Os estudos de prevalência da LEB iniciaram-se quando Alencar Filho, em 1978, examinando 40 amostras de soro sanguíneo, encontrou 60% dos animais positivos no estado de São Paulo. Birgel Júnior et al. (2006), a partir da compilação e análise dos resultados obtidos em diversas pesquisas brasileiras, estabeleceram que a taxa de prevalência de animais infectados era de 27,6% de animais sororreagentes ao antígeno glicoproteico do BLV, e 58,9% dos rebanhos
examinados apresentavam animais infectados. No Quadro 2 apresentam-se as prevalências relatadas no Brasil.

Quadro 2 Estudos de prevalências da LEB realizados em diversos estados do Brasil.

<table>
<thead>
<tr>
<th>Estado</th>
<th>Raça</th>
<th>Prevalência de animais infectados</th>
<th>Prevalência de rebanhos infectados</th>
<th>Teste diagnóstico</th>
<th>Referência</th>
</tr>
</thead>
<tbody>
<tr>
<td>NORTE</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Tocantins</td>
<td>*</td>
<td>37,0</td>
<td>94</td>
<td>IDGA</td>
<td>Fernandes et al. (2009)</td>
</tr>
<tr>
<td></td>
<td>Curraleiro</td>
<td>27,8</td>
<td>100</td>
<td>IDGA</td>
<td>Juliano et al. (2014)</td>
</tr>
<tr>
<td>Pará</td>
<td>Diversas</td>
<td>49,8/26,0</td>
<td>100/83</td>
<td>ELISA/IDGA</td>
<td>Molnár et al. (1999)</td>
</tr>
<tr>
<td>Amazonas</td>
<td>Diversas</td>
<td>9,6</td>
<td>100</td>
<td>IDGA</td>
<td>Carneiro et al. (2003)</td>
</tr>
<tr>
<td>CENTRO-OESTE</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Goiás</td>
<td>Curraleiro</td>
<td>15,3</td>
<td>81,82</td>
<td>IDGA</td>
<td>Juliano et al. (2014)</td>
</tr>
<tr>
<td>NORDESTE</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Alagoas</td>
<td>Diversas</td>
<td>27,8</td>
<td>70,6</td>
<td>IDGA</td>
<td>Pinheiro Júnior et al. (2013)</td>
</tr>
<tr>
<td>Bahia</td>
<td>Diversas</td>
<td>41,0</td>
<td>100</td>
<td>ELISA</td>
<td>Matos, Birgel Junior e Birgel (2005)</td>
</tr>
<tr>
<td>SUDESTE</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Rio de Janeiro</td>
<td>Diversas</td>
<td>53</td>
<td>100</td>
<td>IDGA</td>
<td>Romero e Rowe (1981)</td>
</tr>
<tr>
<td>São Paulo</td>
<td>Diversas</td>
<td>47,4</td>
<td>98,46</td>
<td>ELISA</td>
<td>Megid et al. (2003)</td>
</tr>
<tr>
<td></td>
<td>Simental</td>
<td>9,24</td>
<td>87,5</td>
<td>IDGA</td>
<td>Birgel Junior et al. (2006)</td>
</tr>
<tr>
<td></td>
<td>*</td>
<td>52,5</td>
<td>100</td>
<td>IDGA</td>
<td>Alexandrino et al. (2011)</td>
</tr>
</tbody>
</table>
Quadro 2 Continuação

<table>
<thead>
<tr>
<th>Estado</th>
<th>Raça</th>
<th>Prevalência de animais infectados</th>
<th>Prevalência de rebanhos infectados</th>
<th>Teste diagnóstico</th>
<th>Referência</th>
</tr>
</thead>
<tbody>
<tr>
<td>Minas Gerais</td>
<td>Holandês</td>
<td>70,86</td>
<td>100</td>
<td>IDGA</td>
<td>Modena et al. (1984)</td>
</tr>
<tr>
<td></td>
<td>Diversas</td>
<td>10,2</td>
<td>100</td>
<td>IDGA</td>
<td>Alexandrino et al. (2011)</td>
</tr>
<tr>
<td>SUL</td>
<td>Diversas</td>
<td>12</td>
<td>29,1</td>
<td>IDGA</td>
<td>Moraes et al. (1996)</td>
</tr>
<tr>
<td></td>
<td>Holandês e Jersey</td>
<td>-</td>
<td>60,71</td>
<td>IDGA</td>
<td>Poletto et al. (2004)</td>
</tr>
<tr>
<td></td>
<td>Holandês</td>
<td>-</td>
<td>61,5</td>
<td>IDGA</td>
<td>Frandoloso et al. (2008)</td>
</tr>
<tr>
<td>Paraná</td>
<td>Diversas</td>
<td>56,34</td>
<td>100</td>
<td>IDGA</td>
<td>Barros Filho et al. (2010)</td>
</tr>
<tr>
<td></td>
<td>Holandês e Nelore</td>
<td>20,7</td>
<td>35,7</td>
<td>IDGA</td>
<td>Carvalho et al. (1996)</td>
</tr>
<tr>
<td></td>
<td>*</td>
<td>16,64</td>
<td>20,5</td>
<td>IDGA</td>
<td>Rocha et al. (2014)</td>
</tr>
</tbody>
</table>

* Raças não informadas

Atualmente, o BLV está quase completamente erradicated na União Europeia, mas é altamente prevalente em outras regiões do mundo, como os Estados Unidos, o Japão e a Argentina, onde causa grandes perdas econômicas (FLORINS et al., 2008).

Os únicos animais infectados naturalmente são os bovinos, os bubalinos e as capivaras, no entanto, infeções experimentais já foram realizadas em ovinos e caprinos (TOSTES, 2005). Em ovinos, a doença apareceu mais cedo e com frequências mais elevadas, proporcionando um modelo útil para a compreensão do BLV (PIERARD et al., 2010).

Segundo Ducan, Scarratt e Buchring (2005), de 4% a 8% dos bezerros nascidos de fêmeas soropositivas em rebanhos infectados estão naturalmente
infectados com o BLV no nascimento, sendo comprovado pela sorologia positiva antes da administração de colostro.

O colostro e o leite provenientes de vacas infectadas apresentam partículas virais e linfócitos infectados, possibilitando, dessa forma, a contaminação de bezerros em aleitamento (MILLER; MAATEN, 1977). No entanto, o colostro e o leite não desempenham papel fundamental na disseminação do BLV em condições naturais. Bezerros nascidos e separados de animais BLV infectados podem ser protegidos contra a infecção, durante os primeiros meses de vida, por anticorpos do colostro, sendo uma medida importante na concepção de programas de controle e erradicação. É também possível que a infecciosidade das partículas de BLV e/ou de células infectadas no colostro e leite possa ser perdida no contato com a saliva e nas secreções gástricas e intestinais, ou que não possam passar através da parede do intestino. Dessa forma, acredita-se que a infecção por BLV originada da ingestão de colostro e/ou leite desempenha papel secundário na transmissão natural do BLV (FERRER; PIPER, 1981).

Adicionalmente, Yoshikawa et al. (1997) afirmam que a presença de imunoglobulina específica no colostro neutraliza o vírus, e os títulos de anticorpos no colostro são suficientemente elevados para proteger bezerros da infecção por BLV. É provável, no entanto, que a infecção ocorra quando vitelos sem anticorpo específico se alimentam de leite comum de vacas infectadas, ou se muitos linfócitos infectados por BLV forem dados aos bezerros, após perderem a proteção de anticorpos maternos.

Os bezerros infectados durante a primeira semana de vida podem desempenhar papel ativo na propagação inicial do BLV com animais sensíveis, com o aumento de sua carga pró-viral durante os primeiros 12 meses e persistem tão alto por anos. Eliminação precoce pode ajudar na prevenção da transmissão
para animais jovens suscetíveis e para a sua própria prole (GUTIÉRREZ et al., 2014).

A transmissão horizontal é a principal via de disseminação do BLV. O vírus pode ser transmitido, principalmente, por exposição direta a fluidos biológicos contaminados com linfócitos infectados, particularmente sangue (BRAGA; LAAN, 2001).

A possibilidade da infeção pelo uso de equipamentos ou materiais contaminados com sangue deve ser considerada como de grande importância, merecendo destaque na transmissão iatrogênica da enfermidade os seguintes procedimentos: agulhas hipodérmicas e materiais cirúrgicos lavados e esterilizados de forma inadequada; emprego descuidado de aparelhos de descorna, de aplicação de brincos e tatuadores; utilização de luvas não descartáveis para palpação retal, inseminação artificial ou outros processos de biotecnologia, e inoculações relacionadas à premunição contra hemoparasitas (BIRGEL JUNIOR et al., 1995; KOBAYASHI et al., 2014; RAVAZZOLLO; COSTA, 2007).

Existem evidências de que, nos meses com temperaturas mais elevadas, há um aumento na taxa de transmissão do BLV, devido à presença de vetores mecânicos, como insetos hematófagos, morcegos hematófagos e carrapatos, porém, esta não é a principal via de transmissão (BALDACCHINO et al., 2014; CORDEIRO et al., 1994).

A premunição para anaplasmosse ou babesiose através da utilização de sangue é um fator de risco para a disseminação da doença no rebanho, devido a possibilidade de utilizar sangue de animais positivos para BLV (ROMERO; ROWE, 1981).

A preocupação com a transmissão do BLV por palpação retal parece especialmente pertinente, uma vez que quase todos os animais em idade de reprodução recebem vários exames reais para avaliar o trato reprodutivo e as
luvas de palpação retal, muitas vezes, não são trocadas, quando vacas do mesmo rebanho estão sendo examinadas. Estudos demonstram que a infecção pelo BLV no gado pode ocorrer pela transferência de sangue infectado no reto (DIVERS et al., 1995). Muitos fatores podem influenciar o risco de transmissão de BLV por palpação retal. Os principais seriam o número de linfócitos infectados na luva de palpação no exame, o tempo de palpação e a quantidade de lesões do epitélio retal do animal (KOHARA; KONNAI; ONUMA, 2006).

A descorna de bezerros também representa um fator de risco. Digiacomo, Darlington e Evermann (1985) observaram que a transmissão do BLV ocorria com maior frequência em bezerros descornados sem a limpeza e a desinfecção do material entre cada descorna, e a realização da hemostasia por cauterização contribuiu para uma menor taxa de transmissão do BLV entre os bezerros, sendo, dessa forma, um método de descorna mais seguro, apresentando um risco mínimo de transmissão.

Devido ao fato de a infecção ser, na maioria das vezes, inaparente e, principalmente, pela não visualização dos prejuízos relacionados ao BLV, dificulta a implantação de um programa de controle da infecção, sendo o comprometimento para a implantação do programa por parte dos proprietários, fator essencial para a redução na prevalência da doença (MENDES et al., 2011).

2.3.3 Patogenia

As principais células infectadas pelo BLV são os linfócitos B, podendo também ocorrer infecção dos linfócitos T, embora o seu papel na patogênese não seja ainda conhecido. Uma vez ocorrida infecção, os animais tornam-se portadores pelo resto da vida (RAVAZZOLLO; COSTA, 2007).

A replicação do BLV é caracterizada pelo controle estrito do processo de transcrição viral, que é mantido em baixos níveis na grande maioria das
células infectadas. Em decorrência disso, a patogênia da LEB é marcada pela ausência de viremia na maior parte do processo infeccioso. Esse fenômeno se deve, principalmente, ao acúmulo de mutações na região genômica 5’LTR, responsável pelo controle da transição, o que altera a afinidade de ligação do complexo de proteínas virais e celulares promotoras de transcrição (ZHAO et al., 2007). Esse controle da transcrição, provavelmente, é uma estratégia viral para escapar à resposta imune do hospedeiro, já que reduz drasticamente a produção de proteínas virais que, por sua vez, não podem ser convertidas em epítropos e apresentadas aos linfócitos T pelo sistema MHC-I das células infectadas (PIERARD et al., 2010).

A maioria dos bovinos infectados pelo BLV permanece assintomática. Cerca de um terço do número de animais infectados desenvolve doença crônica proliferativa chamada linfocitose persistente (LP), em que os números de linfócitos B circulantes elevam-se acentuadamente. No entanto, menos de 5% dos bovinos infectados desenvolvem linfomas de células B associados ao BLV (COFFIN; HUGHES; VARMUS, 1997).

Variações na população de linfócito B ocorrem em animais BLV infectados como resultado de uma alteração do equilíbrio complexo entre os diferentes parâmetros, incluindo proliferação celular, diferenciação, morte e recirculação entre o sangue periférico e órgãos linfoides secundários (FLORINS et al., 2008).

A LP ocorre em, aproximadamente, 30% dos animais infectados pelo BLV e caracteriza-se pela expansão policional de linfócitos B CD5+. Essa expansão resulta no aumento da quantidade de linfócitos no sangue acima do intervalo de referência por um mínimo de três meses. Essa forma de linfocitose é uma proliferação não neoplásica de linfócitos B (FRY; MCGAVIN, 2009).

A sequência de eventos que levam ao aumento do número de linfócitos circulantes ou ao desenvolvimento de linfoma é pouco conhecida, assim como
também não está elucidado o efeito de tais alterações na função das células envolvidas na resposta imunológica (AZEDO et al., 2008).

O aumento do número de linfócitos circulantes poderia ser gerado por redução no potencial apoptótico das células infectadas, induzidas pela ação do agente viral, porém, a dinâmica celular ainda necessita ser mais bem elucidada em bovinos manifestando LP (AZEDO et al., 2012).

A LP é uma estratégia do BLV para aumentar a infectividade do sangue dos bovinos e facilitar a disseminação horizontal na população suscetível. Buxton e Shultz (1984) demonstraram que quanto maior a LP em um bovino infectado, menor volume de sangue desse bovino é necessário para se obter infecção, por transferência e inoculação do sangue, em outro bovino não infectado. Apesar disso, animais saudáveis infectados pelo BLV, mas sem LP e sem quadro de linfoma, são portadores assintomáticos do vírus e reconhecidos como fonte de transmissão para bovinos suscetíveis (KOHARA; KONNAI; ONUMA, 2006).

O desenvolvimento de linfoma acarreta transtornos ao organismo, que apresenta uma série de manifestações clínicas, dependendo dos órgãos ou sistemas afetados. A forma tumoral da doença atinge, geralmente, animais acima de dois anos de idade, sendo a maior incidência em animais de cinco a oito anos (RAVAZZOLLO; COSTA, 2007). Segundo os mesmos autores, a forma de linfoma induzida por BLV é conhecida como linfoma enzoótico bovino e acomete menos de 5% dos animais infectados. É, principalmente, uma doença multicêntrica de linfócitos B em bovinos adultos.

A forma neoplásica da LEB é caracterizada por proliferação linfocitária descontrolada nos órgãos hemocitopoéticos, como medula óssea, linfonodos e baço, bem como nos órgãos ricos em tecido retículo histiocitário (abomaso, coração, rins, fígado e músculos). O resultado são formações tumorais com proliferação e infiltração de linfócitos B neoplásicos, responsáveis por quadro
sintomático variado e alterações hematológicas evidenciadas por leucocitose, linfocitose persistente e aumento das formas linfocitárias atípicas (BIRGEL JUNIOR et al., 2006).

Embora as neoplasias sejam mais frequentes em animais com LP, linfomas também se desenvolvem em animais sem elevação aparente da contagem de linfócitos B no sangue. Sugere-se que a transformação da célula que dá origem às leucemias e aos linfomas seja um evento independente de LP (CHIBA et al., 1995). Essa suspeita é reforçada pela observação de que a população de linfócitos B em neoplasias induzidas pelo BLV é hospedeira de apenas um clone de DNA pró-viral do vírus (TAJIMA et al., 1998). Assim, parece que toda a população linfocitária que se infiltra e origina os tumores é resultado da mitose a partir de uma única célula ancestral que se tornou neoplásica após a transformação por um clone do BLV.

Burridge, Wilcox e Hennemann (1979) verificaram que a prevalência de anticorpos anti BLV aumentava progressivamente até os cinco anos de idade e, depois disso, permanecia a um nível constante. Estes mesmos autores estimaram a herdabilidade da susceptibilidade à infecção pelo BLV (estimativa de herdabilidade de 0,48 ± 0,22) e verificaram considerável influência genética.

A resistência e a susceptibilidade à infecção pelo BLV foram inicialmente associadas a diferentes alelos do locus Bovine Lymphocyte Antigen (BoLA), pertencente ao complexo principal de histocompatibilidade (MHC). Posteriormente, verificou-se uma maior relação com o gene DRB3 classe II, sendo observada uma associação mais forte com resistência e susceptibilidade ao desenvolvimento de LP, e animais portadores deste gene apresentaram cargas pró-virais reduzidas. Sendo assim, acredita-se que animais portadores do gene DRB3 classe II sejam incapazes de transmitir o BLV para outros animais do rebanho (LEWIN et al., 1988; RODRÍGUEZ et al., 2001).
Segundo Rodríguez et al. (2011), seria possível selecionar raças que são menos suscetíveis ou, até mesmo, resistentes à infecção pelo BLV. Existem diversos fatores limitantes à possibilidade de seleção genética de animais menos susceptíveis ou resistentes ao BLV. Entre eles podem ser citados: a relevância e a significância de marcadores em âmbito populacional, considerando a diversidade de raças bovinas, devendo, dessa forma, ser realizado um estudo em grande escala, avaliando a eficiência e as consequências da seleção; a diminuição da variabilidade genética, podendo ocorrer impacto na resistência a outros patógenos, além de possíveis efeitos adversos na produtividade, gerando uma relação negativa de custo benefício.

A produção leiteira e a eficiência reprodutiva podem ser afetadas devido à ocorrência da LEB no rebanho. Brenner et al. (1989) avaliaram o desempenho produtivo e reprodutivo de animais infectados por BLV, em comparação com animais não infectados e verificaram que a diferença média de produtividade de leite foi de apenas 3,5%, quando calculada para todo o ciclo de vida produtivo, porém, aumentou para 7,5%, no último período de ordenha. A mesma tendência pode ser observada com os valores retirados do estudo que avalia o desempenho reprodutivo. D’Angelino, Garcia e Birgel (1998) também observaram um menor
desempenho produtivo em animais soropositivos em relação aos soronegativos ao BLV, com média 11% menor na produção diária de leite, porém, não relataram diferença significativa no desempenho reprodutivo. Rajão et al. (2014) verificaram associação entre a infecção pelo BLV e a produção de leite, gerando um efeito negativo sobre a produção de leite de bovinos mestiços, demonstrando que a infecção pelo BLV pode resultar em consideráveis perdas econômicas para os produtores de leite no Brasil.

2.3.4 Diagnóstico

Os anticorpos para várias proteínas virais podem ser detectados dentro de alguns dias ou semanas após a infecção experimental pelo BLV (TRAININ; BRENNER, 2005). As respostas de anticorpos em bovinos infectados pelo BLV são dirigidas contra glicoproteínas virais de superfície, mas os anticorpos contra outras proteínas estruturais também foram encontrados (BAN et al., 1990).

Identificação sorológica de vacas infectadas com o BLV pode ser realizada de duas maneiras. O soro pode ser testado para anticorpos dirigidos contra a gp51, uma glicoproteína do envelope viral com peso molecular de 51.000Da, ou pode ser testado para anticorpos dirigidos contra a p24, um polipeptídeo com um peso molecular de 24.000Da, a principal proteína do capsídeo do BLV (DE BOER et al., 1989).

As técnicas para pesquisa de anticorpos recomendadas pela Organização Mundial de Saúde Animal (OIE, 2015) são o teste de imunodifusão dupla em gel de ágar (IDGA) e o *enzyme linked immuno sorbent assay*, ou ELISA, que detectam anticorpos contra a glicoproteína do envelope viral denominada gp51.

O teste de IDGA provou ser suficientemente sensível e específico para a detecção de anticorpos no soro, sendo considerado, há muitos anos, a prova de
eleição. Mas, para detectar anticorpos no leite, é necessário o teste ELISA, por ser mais sensível (DE BOER et al., 1989).

De todos os diferentes métodos sorológicos utilizados para fins de diagnóstico, o ELISA é o mais prático, por possuir kits padronizados comerciais, sendo bastante sensível, simples e de fácil execução em grande escala (BAN et al., 1990). A técnica ELISA, segundo Leuzzi Júnior, Alfieri e Alfieri (2001), tem maior sensibilidade quando comparada à da IDGA. O *western blotting* (WB) é outro teste sorológico altamente específico e adequado para ser introduzido como teste confirmatório na ausência da RT-PCR (GONZÁLEZ; LICURSI; BONZO, 2007).

Em algumas situações, as provas sorológicas falham na identificação dos animais infectados, como, por exemplo, no periparto, em animais infectados recentemente, visto que a detecção de anticorpos ocorre, no mínimo, três semanas após a infeção (Dias et al., 2012). Exames sorológicos negativos para BLV, de animais gestantes provenientes de rebanhos acometidos pela leucose, devem ser interpretados com cautela e repetidos durante o puerpério, pois podem estar apresentando imunodepressão que interfere no níveis de produção de anticorpos (MELO; MARQUES JUNIOR, 1993).

A *reverse transcriptase-polimerase chain reaction*, ou RT-PCR, é um teste de diagnóstico direto do BLV e, segundo a OIE (2015), é recomendada, principalmente, como um adjuvante de sorologia para testes de confirmação. É uma técnica restrita aos laboratórios que têm acesso à virologia molecular e têm o controle dos procedimentos para garantir a confiabilidade dos resultados. A identificação de DNA pró-viral do BLV pela técnica de PCR é útil nas seguintes circunstâncias: bezerras jovens com anticorpos colostrais; como um teste de triagem para identificar animais que possam estar infectados, mas ainda não têm anticorpos; diferenciação entre linfoma esporádico e infeccioso; tecido tumoral proveniente de casos suspeitos recolhidos em matadouros; resultados
inconclusivos em ELISA; rastreio sistemático de animais em estações de teste de progênies (antes da introdução em centros de inseminação artificial) e animais utilizados para a produção de vacinas, garantindo que eles sejam BLV livre (KOHARA; KONNAI; ONUMA, 2006; LEUZZI JUNIOR; ALFIERI; ALFIERI, 2001; OIE, 2012).

A técnica de imuno-histoquímica a partir de cortes histológicos suspeitos para a presença de BLV também pode ser utilizada como método diagnóstico (CHIBA et al., 1995).

2.3.5 Controle

O monitoramento realizado por meio de exames sorológicos periódicos pode auxiliar na adoção de medidas que permitam controlar a enfermidade no rebanho. Exames sorológicos na entrada de animais no rebanho e a eliminação gradativa dos positivos podem ser determinantes no controle da enfermidade (CORDEIRO et al., 1994). Animais importados oficialmente devem ser submetidos a testes sorológicos e somente animais soronegativos são admitidos no país. Porém, a introdução ilegal de animais, principalmente aqueles provenientes de fronteiras com países vizinhos, representa uma fonte potencial de difusão da infecção (MORAES et al., 1996).

Braga et al. (1997) analisaram a eficiência de três métodos de controle da infecção pelo BLV em rebanhos leiteiros, eliminação dos soropositivos, segregação do rebanho e manejo misto, e concluíram que a eliminação dos animais positivos é viável somente quando a prevalência é baixa, sendo também necessário o acompanhamento sorológico do rebanho, pois a permanência de um animal infectado torna-se fonte de novas infecções. O método de segregação de animais positivos e negativos, embora pouco prático, mostrou-se eficaz quando adotadas as medidas recomendadas, possibilitando a eliminação fracionada dos
animais infectados. Já o manejo misto mostrou-se inviável em curto prazo, possivelmente pela dificuldade em seguir as medidas preventivas. Adicionalmente, Gillet et al. (2007) afirmaram que nenhum método isoladamente alcança a melhor combinação de economia, eficiência e segurança.

Della Libera et al. (2015) verificaram que animais com LP apresentam altas cargas pró-virais, sendo uma possível alternativa de controle a eliminação destes animais, visando à redução da transmissão do BLV.

Segundo Forletti et al. (2013), os programas de controle e erradicação baseados na detecção sorológica e o posterior abate sanitário de animais infectados pelo BLV são impraticáveis em países com ampla disseminação do BLV. Dessa forma, a única abordagem possível seria a seleção de bovinos resistentes ao vírus. Segundo estes mesmos autores, animais resistentes apresentam baixa carga pró-viral e não transmitem o vírus para outros bovinos, sob condições naturais, em uma fazenda comercial.

2.4 Imunodepressão pelo BLV e predisposição para outras infecções

A infecção pelo BLV afeta o sistema imunológico do animal e seu impacto sobre a saúde do rebanho e a economia pode ser mais extenso do que a perda direta decorrente de linfomas. Isso pode ser observado a partir de estudos sobre a susceptibilidade de vacas BLV infectadas para as doenças infecciosas e as taxas de produção, reprodução e abate (TRAININ; BRENNER, 2005).

O BLV infecta predominantemente linfócitos B e, dessa forma, ocorrem anormalidades na resposta imune dos animais infectados. Há dados na literatura que indicam que a resposta imune humoral, e também a resposta celular, é prejudicada em vacas infectadas que mostraram uma redução de células produtoras de IgM no baço e nódulos linfáticos (BRENNER et al., 1989), além
de produzir anticorpos inespecíficos devido à expansão policlonal, o que indica uma possível deficiência na imunidade humoral (TRAININ; BRENNER, 2005).

O comprometimento da integridade do sistema imunitário orgânico pela ação imunodepressora do BLV, que penetra e se incorpora no genoma linfocitário por tempo indeterminado, associado a evidências de que monócitos circulantes também são infectados, aumenta a susceptibilidade do hospedeiro a outras infecções.

As células mononucleares de vacas infectadas pelo BLV expressam mais RNAm de IL-4 e IL-10, no período pós-parto, em comparação com as vacas não infectadas pelo BLV. Estas citocinas são responsáveis por mediar a imunidade humoral e suprimir a produção de citocinas associadas com imunidade mediada por célula, tais como IL-12 e IFN-γ (KAKINUMA, 2014). O predomínio da imunidade humoral faz com que vacas BLV sejam mais propensas a progredir para LP ou para a LEB (KABEYA; OHASHI; OMUMA, 2001).

Possíveis alterações, relacionadas à gênese da LP, nas funções inerentes às demais populações leucocitárias, podem levar o animal a um estado depleitivo na proteção fornecida pelo aparato imunitário, apontando para um quadro de imunodepressão e descaracterizando a LP como uma manifestação benigna da doença (AZEDO et al., 2011). Estes mesmos autores observaram que células da linhagem monócito-macrófago, isoladas de bovinos infectados pelo BLV e que manifestavam LP, apresentaram reduzido índice de fagocitose, quando comparadas com os índices de fagocitose de células de animais não infectados.

Espera-se que algumas características subclínicas de distúrbios hematológicos possam resultar em um sistema imunitário deficiente, especialmente quando LP positiva é evidente, e, por conseguinte, algumas manifestações clínicas inespecíficas podem ocorrer (BRENNER; AVIDER; LAHAV, 2007).
Animais com LP têm reduzida capacidade de resposta imune e função de células T (IKEBUCHI et al., 2011) e, sendo assim, vacas infectadas com BLV são mais propensas a desenvolver mastite no períprotio, bem como a LEB.

Brenner et al. (1989) encontraram correlação entre a infecção pelo BLV e a baixa recuperação espontânea em casos de micose, indicando, assim, ausência de resposta imunitária em vacas BLV infectadas.

Sledge et al. (2009) verificaram que uma infecção subjacente com BLV predispõe o animal à infecção por Mycobacterium bovis e ao desenvolvimento de tuberculose disseminada. Isso, no entanto, não pode ser definitivamente confirmado, pois a coinfecção do gado, tanto com o BLV como pelo M. bovis, pode ocorrer em áreas geográficas em que ambas as doenças são endêmicas.

Alexandrino et al. (2011) estudaram a associação entre as infecções pelo herpesvírus bovino (BoHV-1), vírus da diarreia viral bovina (BVDV) e LEB, e concluíram que existe maior probabilidade de infecção pelo BoHV-1 quando o animal apresenta uma das duas outras doenças imunodepressoras.

Os efeitos da infecção pelo BLV na produção de leite podem estar relacionados não exclusivamente aos danos à saúde geral do animal, mas também por lesões celulares, posto que Motton e Buehring (2003) encontraram um aumento nas taxas de crescimento e na longevidade de células epiteliais mamárias infectadas, com alteração na sua diferenciação normal e inibição na produção de caseina. Emanuelson et al. (1992) observaram que vacas BLV positivas apresentaram tendência acentuada ao desenvolvimento de doenças com uma possível etiologia infecciosa (mastite, bronquite/pneumonia, pododermatitis), enquanto as doenças não infecciosas (paresia, retenção de placenta, cetose) não mostraram associações consistentes.

Garcia et al. (1995) observaram que existe predisposição dos animais infectados pelo BLV para o aparecimento da mastite bovina. Dos resultados encontrados pelos autores, notou-se que nenhum animal reagente ao BLV
apresentou amostras de leite isentas de microrganismos. Porém, segundo Garcia et al. (2002), não existe comprovação científica de que de fato ocorra imunodepressão em animais portadores assintomáticos do vírus.

Sandev et al. (2004) verificaram diferença estatisticamente significativa na incidência da mastite subclínica em vacas soropositivas para BLV com LP, representando 77%, em comparação com as vacas BLV negativas (25%). A incidência, neste estudo, de mastite subclínica em animais positivos ao BLV e sem LP foi de 44%.

Kakinuma et al. (2014) verificaram que vacas infectadas com o BLV apresentaram menor número de células T no período pré-parto, e estas eram propensas a desenvolver mastite clínica após o parto. Adicionalmente, o título de BLV foi maior nesse período, aumentando o risco de propagação do vírus no rebanho.

3 OBJETIVO GERAL

Investigar a intercorrência da infecção pelo BLV e mastite em vacas leiteiras naturalmente infectadas.

3.1 Objetivos específicos

a) Determinar a prevalência da infecção pelo BLV em rebanhos.

b) Determinar a frequência de animais sorocorrespondidos com linfocitose persistente.

c) Avaliar a prevalência da mastite nos rebanhos selecionados, correlacionando com a condição nosológica dos animais quanto ao BLV.
d) Realizar análises microbiológicas do leite dos animais integrantes do estudo, identificando os agentes patogênicos e correlacionando com a condição nosológica dos animais quanto ao BLV.

4 MATERIAL E MÉTODOS

4.1 Local do estudo

O estudo foi realizado na mesorregião do Campo das Vertentes, na região sul do estado de Minas Gerais, Brasil.

Utilizaram-se os seguintes critérios de inclusão dos rebanhos: 1) genealogia (rebanho holandês grau de sangue 7/8 ou superior); 2) número de animais em lactação maior ou igual a 50 cabeças; 3) presença do BLV no rebanho e 4) pertencer à mesorregião do Campo das Vertentes.

4.2 Triagem

Após a seleção dos rebanhos utilizando os critérios de inclusão, realizou-se a investigação da prevalência do BLV. Dessa forma, foram coletadas amostras de sangue de todas as vacas em lactação.

4.2.1 Sorologia

Para a coleta das amostras de sangue foi utilizado sistema a vácuo (Vacutainer®), por punção venosa da veia coccígea. As amostras de sangue foram identificadas e transportadas, sob refrigeração, para o sorodiagnóstico no Laboratório de Virologia do Departamento de Medicina Veterinária da UFLA.
O soro obtido após a centrifugação, por 10 minutos, a 1077 xg, foi conservado à temperatura de -20 °C, até a realização da sorologia para BLV.

A pesquisa de anticorpos para BLV em soro bovino para a detecção dos animais reagentes e dos não reagentes aos antígenos do mencionado vírus foi realizada pela prova de imunodifusão em gel de ágar (IDGA), segundo metodologia preconizada pelo fabricante do kit diagnóstico (Laboratório TECPAR®, Curitiba, PR).

4.3 Formação dos grupos de casos e controles

Após a classificação dos animais quanto à sorologia anti BLV, coletaram-se as informações dos animais pertencentes às fazendas participantes, realizou-se a classificação dos animais em casos e controles, tendo os soronegativos sido utilizados como controles. Os animais infectados pelo BLV foram escolhidos levando em consideração a homologia da situação produtiva com um controle, de forma que ambos tivessem a mesma quantidade de partos e os números de dias em lactação estivessem semelhantes. Assim, foi selecionado um animal positivo para BLV (caso) com características semelhantes ao animal negativo para BLV (controle) correspondente, totalizando 196 pares de caso controle, ou seja, 392 vacas foram selecionadas para o acompanhamento.

4.3.1 Fluxograma de coletas

Após a determinação dos grupos de casos e de controles, foram realizadas coletas com intervalo de 30 dias, sendo a primeira delas considerada o dia 0 (D0). As análises e os grupos avaliados encontram-se apresentados no Quadro 3.
As coletas foram divididas em D0 (dia 0), D30 (dia 30), D60 (dia 60) e D90 (dia 90). Os animais controle foram acompanhados durante 60 dias e o grupo de casos foi acompanhado por 90 dias. Essa diferença ocorreu devido à necessidade de avaliar os animais do grupo de casos hematologicamente para determinar a persistência da linfocitose e posterior classificação em animais LP (MODENA et al., 1984).

Quadro 3Distribuição das análises de acordo com a data da coleta e o grupo de animais.

<table>
<thead>
<tr>
<th>Análise</th>
<th>D0</th>
<th>D30</th>
<th>D60</th>
<th>D90</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Caso</td>
<td>Controle</td>
<td>Caso</td>
<td>Controle</td>
</tr>
<tr>
<td>Sorologia</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>X</td>
</tr>
<tr>
<td>Hematologia</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>X</td>
</tr>
<tr>
<td>CMT</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>X</td>
</tr>
<tr>
<td>Bacteriologia</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>X</td>
</tr>
</tbody>
</table>

As sorologias dos animais pertencentes ao grupo de controles foram realizadas para acompanhar a soroconversão dos animais participantes deste estudo. Os animais que apresentaram sorologia positiva na IDGA nas avaliações em D0, D60 e/ou D90 foram excluídos ao final do projeto.

Foram realizadas duas avaliações da sanidade das glândulas mamárias de todos os animais participantes do estudo, nos dias D0 e D60, por meio de CMT e bacteriologia.

4.3.2 Análise hematológica

As coletas foram realizadas por punção venosa da veia cocígea em sistema a vácuo (Vacutainer®), em tubos de 5 ml com *ethylene diamine tetraacetic acid* (EDTA), ou ácido etilenodiamino tetra-acético. As amostras de sangue foram identificadas e transportadas sob refrigeração, para a realização
das análises hematológicas no Laboratório de Hematologia, no Departamento de Medicina Veterinária da Universidade Federal de Lavras (UFLA).

O número total de leucócitos foi mensurado utilizando-se o método de hemocitômetro (câmara de Neubauer). A contagem diferencial foi realizada em microscópio óptico por meio de esfregaços sanguineos corados pelo kit tipo panóptico rápido.

Para a classificação, quanto à linfocitose, dos animais soropositivos ao BLV, foram utilizadas como referências as chaves hematológicas de Beindixen (1958) e Ressang, Mastebroek e Quak (1976). Para a determinação da linfocitose persistente nos animais reagentes e a posterior divisão em três grupos, foram realizadas quatro coletas para análise hematológica em D0, D30, D60 e a última com 90 dias, D90 (MODENA et al., 1984), possibilitando a divisão dos animais em três grupos, sendo:
SN - animais negativos ao sorodiagnóstico do BLV;
SL - animais soropositivos ao BLV com ausência de linfocitose persistente;
LP - animais soropositivos ao BLV com linfocitose persistente.

4.3.3 California mastitis test

Como triagem na identificação de animais com mastite subclínica utilizou-se um método indireto de contagem de células somáticas, o california mastitis test, ou CMT, com base na metodologia de Schalm e Noorlander (1957). Dessa forma, foram retirados os primeiros jatos de leite antes da ordenha, desprezando-os e colhendo-se, logo após, 2 mL de leite de cada teto nos respectivos recipientes da bandeja de CMT, adicionando-se, então, 2 mL da solução CMT e agitando a mistura por 10-15 segundos, procedendo-se imediatamente à leitura do teste.

As reações foram classificadas da seguinte maneira:
0 | Negativo: sem formação de gel;
1 | Reação traço: discreta gelatinização da solução;
2 | 1 + (+): leve formação de gel;
3 | 2 + (++): formação de gel espesso bem definido;
4 | 3 + (+++): gel bastante espesso, assentando no fundo da bandeja.

Foram realizadas duas avaliações de CMT, sendo considerada a primeira avaliação em D0 (dia 0) e a segunda após 60 dias, em D60. Classificaram-se os resultados do CMT segundo a reação inflamatória, de acordo com os escores: 0 (negativo), 1 (traço - reação suspeita) e as reações positivas em 2(+), 3(++) e 4(+++). As amostras de leite destinadas a análises bacteriológicas foram coletadas de quartos individuais com reação positiva ao teste CMT, ou seja, maior ou igual ao escore 2 no CMT.

4.3.4 Análise bacteriológica do leite

Foram realizadas duas avaliações de CMT, sendo considerada a primeira avaliação em D0 (dia 0) e a segunda após 60 dias, em D60. Posterior à realização do CMT, os quartos que apresentaram reação positiva tiveram amostras de leite coletadas em frascos estéreis e individuais, após limpeza do teto, lavagem com água corrente, secagem com toalha de papel descartável e utilização de solução de álcool iodado a 5%, para desinfecção do esfincter do teto.

As amostras de leite foram identificadas e transportadas, em caixa de material isotérmico, com gelo reciclável, até o Laboratório de Microbiologia Veterinária, no Departamento de Medicina Veterinária da UFLA.

Para a identificação dos microrganismos utilizou-se metodologia descrita pelo National Mastitis Council (CHAIR et al., 2004).
4.4 Análise estatística

Para investigar a interferência da infecção pelo BLV na sanidade da glândula mamária de bovinos, algumas variáveis relacionadas ao diagnóstico da mastite, assim como alguns parâmetros sanguíneos, foram testadas entre os grupos de SN, SL e LP. Assim, foram aplicados testes de qui-quadrado entre a ocorrência da mastite, avaliada por meio de dois testes CMT, aplicados nos dias 0 e 60 e a distribuição do BLV nos animais, além de avaliadas possíveis diferenças nas médias dos segmentados, bastonetes, eosinóficos e linfócitos entre os grupos, por meio de testes t de student.

Além disso, foram somados os escores obtidos por cada quarto, em cada um dos testes de CMT, para cada animal (quarto perdido foi pontuado como 10), o que permitiu a avaliação da presença da mastite com relação ao BLV por meio de teste t de student e alguns parâmetros sanguíneos (número absoluto de segmentados, bastonetes, eosinóficos, e linfócitos) por meio de testes de correlação de Spearman, após a verificação da ausência de normalidade nos dados pelo teste de shapiro-wilk. O teste t de student foi utilizado na ausência de distribuição normal pela capacidade deste teste de manter seu poder em situações de um número elevado de animais avaliados (MAROCO, 2010).

Para avaliar a prevalência do BLV em todos os rebanhos avaliados, e associar com o número de partos, foram aplicados testes estatísticos de qui-quadrado. Para avaliar a associação entre a soroconversão de animais inicialmente caracterizados como negativos para o BLV e a ocorrência da mastite, foram aplicados testes de qui-quadrado.
5 RESULTADOS E DISCUSSÃO

5.1 Triagem dos rebanhos e prevalências do BLV

O presente projeto foi aprovado pela Comissão de Ética no Uso de Animais (CEUA) da Universidade Federal de Lavras, em 30 de janeiro de 2014, protocolo nº079/13.

Este trabalho teve início em fevereiro e término em dezembro de 2014. No total, foram avaliadas 1.392 vacas, pertencentes a dez rebanhos das cidades de Campo Belo, Ijaci, Itutinga, Lavras, Perdões, São Gonçalo do Sapucaí e Três Corações. Todas foram testadas frente à técnica de IDGA para diagnóstico da infecção pelo BLV. Entretanto, houve a necessidade de se excluir três rebanhos do processo de análise da intercorrência da infecção pelo BLV e mastite, permanecendo no estudo 1.192 animais.

A exclusão de três fazendas ocorreu devido a: 1) prevalência de 100% de animais em lactação infectados pelo BLV, não apresentando, dessa forma, animais negativos para serem avaliados como controles; 2) a alta prevalência de mastite clínica e condições sanitárias inadequadas e 3) desistência da participação no estudo por parte do produtor.

Verificou-se a presença do BLV em 100% dos rebanhos avaliados (Tabela 1), com prevalência geral de 80,89% (1126/1392) em animais com faixa etária acima de 24 meses. As prevalências observadas variaram de 73,28% a 100,00%, com média entre propriedades de 83,11%.

A LEB encontra-se disseminada no Brasil, com prevalências que variam de 9,24% a 70,86, dependendo da região e do tipo de exploração da propriedade, como apresentado no Quadro 2. Quando se avalia a prevalência do BLV em número de rebanhos infectados, verifica-se alta prevalência na maioria dos trabalhos realizados no Brasil. Em Minas Gerais, verificou-se que 100% dos...
rebanhos investigados apresentavam animais soropositivos para o BLV (ALEXANDRINO et al., 2011; MODENA, 1984).

Tabela 1 Frequências absolutas e prevalências da infecção pelo BLV em vacas em idade reprodutiva, distribuídas por município avaliado.

<table>
<thead>
<tr>
<th>Município</th>
<th>Fazenda</th>
<th>Percentual de sororreagentes (%)</th>
<th>Número de sororreagentes</th>
<th>Número de animais examinados</th>
</tr>
</thead>
<tbody>
<tr>
<td>Ijací</td>
<td>H</td>
<td>100,00</td>
<td>60</td>
<td>60</td>
</tr>
<tr>
<td>São Gonçalo do Sapucaí</td>
<td>E</td>
<td>85,05</td>
<td>91</td>
<td>107</td>
</tr>
<tr>
<td>Perdões</td>
<td>A, B, I</td>
<td>84,49</td>
<td>354</td>
<td>419</td>
</tr>
<tr>
<td>Lavras</td>
<td>C</td>
<td>82,96</td>
<td>112</td>
<td>135</td>
</tr>
<tr>
<td>Três Corações</td>
<td>J</td>
<td>79,22</td>
<td>61</td>
<td>77</td>
</tr>
<tr>
<td>Itutinga</td>
<td>D, G</td>
<td>76,80</td>
<td>278</td>
<td>362</td>
</tr>
<tr>
<td>Campo Belo</td>
<td>F</td>
<td>73,28</td>
<td>170</td>
<td>232</td>
</tr>
<tr>
<td>Média</td>
<td></td>
<td>83,11</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

A elevada prevalência do BLV observada neste trabalho (83,11%) é justificada pela conjunção de diversos fatores de risco positivos na população estudada. A pesquisa foi conduzida exclusivamente com rebanho leiteiro, produção que submete os animais a um manejo mais intensivo, com a utilização de práticas que favorecem a disseminação do vírus no rebanho. Outro fator que pode ter contribuído para esta média elevada é a realização do sorodiagnóstico apenas em vacas adultas que, devido ao maior período de exposição em rebanhos prevalentes para LEB, apresentam maior probabilidade de serem infectadas (BIRGEL JUNIOR et al., 2006; RAJÃO et al., 2012).

Em 1984, Modena et al. encontraram prevalência elevada em rebanho de vacas holandesas, sendo de 70,86%. Alexandrino et al. (2011) encontraram prevalência menor (10,2), porém, o estudo foi realizado com animais de diferentes tipos de exploração. Quando estes relacionam o tipo de exploração e o
índice de infecção pelo BLV, verifica-se um aumento na prevalência em rebanhos leiteiros, passando a ser de 49,5%.

Foram coletadas as informações das vacas analisadas de sete dos dez rebanhos avaliados, totalizando 1.131 animais que tinham informações do manejo reprodutivo disponíveis. Estes animais foram avaliados de acordo com o número de partos e sua condição sorológica frente ao BLV (Tabela 2).

<table>
<thead>
<tr>
<th>Nº de partos</th>
<th>Percentual de sororreagentes</th>
<th>Número de sororreagentes</th>
<th>Número de animais examinados</th>
<th>Valor de p</th>
<th>OR (IC.95%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>75,78 %</td>
<td>291</td>
<td>384</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>2</td>
<td>80,33 %</td>
<td>241</td>
<td>300</td>
<td>0,155</td>
<td>-</td>
</tr>
<tr>
<td>3</td>
<td>79,80 %</td>
<td>162</td>
<td>203</td>
<td>0,269</td>
<td>-</td>
</tr>
<tr>
<td>4</td>
<td>86,78 %</td>
<td>105</td>
<td>121</td>
<td>0,010</td>
<td>2,10 (1,18-3,73)</td>
</tr>
<tr>
<td>> 5</td>
<td>87,80 %</td>
<td>108</td>
<td>123</td>
<td>0,004</td>
<td>2,30 (1,28-4,14)</td>
</tr>
</tbody>
</table>

Os dados da Tabela 2 demonstram diferença significativa (p<0,05) entre a infecção pelo BLV e vacas com quatro partos ou mais, as têm, em média, duas vezes mais chances de estarem infectadas do que vacas abaixo de quatro partos. Dados encontrados na literatura corroboram o resultado encontrado, pois animais mais velhos apresentam maior índice de infecção pelo BLV, sendo que a infecção ocorre com maior frequência em animais com mais de 24 meses de idade, devido à intensificação das práticas de riscos e à maior permanência dos bovinos mais velhos nos rebanhos infectados e, por isso, submetidos à exposição prolongada ao vírus (BARROS FILHO et al., 2010; MATOS; BIRGEL JUNIOR; BIRGEL, 2005; PANZIERA et al., 2014; TRAININ; BRENNER, 2005).
5.2 Relato de caso clínico de LEB

Durante o período de acompanhamento pode-se observar a ocorrência da LEB em três animais pertencentes a duas propriedades, uma localizada em Perdões e outra em Itutinga. Os três animais participaram da etapa de triagem e todos foram sorologicamente positivos para o BLV. Dois destes animais foram abatidos em frigorífico e suas carcaças condenadas totalmente, devido à presença de massas tumorais.

Um dos animais foi encaminhado para necropsia no Setor de Patologia Veterinária do Departamento de Medicina Veterinária da UFLA, com histórico de paresia dos membros posteriores, gestante de sete meses e estava em sua quarta lactação, ou seja, este animal tinha, em média, seis anos.

Na necropsia, a lesão de maior relevância observada foi uma massa tumoral na região lombar, infiltrada no canal medular (Figuras 1 e 2), ao exame histopatológico foi verificada proliferação de linfócitos neoplásicos, infiltrados ao redor da meninge, comprimindo nervos entremeados com tecido adiposo. A sintomatologia apresentada, o histórico deste animal e os resultados encontrados na necropsia e na histopatologia permitiram diagnosticá-lo com LEB.
Figura 1 Vaca clinicamente acometida pela LEB, apresentando paresia dos membros posteriores e aumento de volume na coluna vertebral, entre a penúltima e a última vértebra torácica (seta). Setor de Patologia Veterinária, DMV – UFLA.

Figura 2 Massa tumoral localizada na região lombar em animal acometido pela LEB. Setor de Patologia Veterinária, DMV – UFLA.
Este caso clínico relatado está de acordo com relatos encontrados na literatura. Tratava-se de uma vaca com idade média de seis anos, proveniente de um rebanho leiteiro e positivo para o BLV (FRY; MCGAVIN, 2009).

A LEB acomete menos de 5% dos animais infectados com o BLV e tem sintomatologia inespecífica, podendo ter diversas manifestações, dependendo do órgão acometido pelo linfoma (BRAGA; LAAN, 2001; RAVAZZOLLO; COSTA, 2007). O diagnóstico desta patologia nos rebanhos avaliados reflete a elevada prevalência encontrada nestas fazendas. Adicionalmente, é possível que a genética dos animais desses rebanhos seja mais susceptível à manifestação da forma tumoral da infecção pelo BLV, embora a confirmação dessa observação requeira a análise genética da população envolvida.

5.3 Estudos dos animais casos e controles

Inicialmente, foram classificados 196 casos e 196 controles, que foram acompanhados durante 60 dias (controles) e 90 dias (casos). Essa diferença no período de acompanhamento ocorreu devido à necessidade de avaliar a persistência da linfocitose por um período mínimo de 90 dias, para classificar os animais com LP (MODENA et al., 1984).

Durante o período de acompanhamento, houve a exclusão de 145 animais do estudo, sendo 70 animais controle devido à soroconversão e 75 que foram vendidos, saíram do período de lactação, morreram ou foram descartados. Dessa forma, o número final de animais avaliados foi de 247, sendo 87 controles e 160 casos.

Os animais controles formaram o grupo SN e os soropositivos ao BLV foram classificados em LP e SL, segundo a chave hematológica de Beindixen (1958). Observaram-se 74% (119/160) de SL e 26% (41/160) de LP. E, segundo a classificação de Ressang, Mastebroek e Quak (1976), observaram-se 79%
(126/160) de SL e 21% (34/160) de LP. Essa distribuição entre os animais soropositivos ao BLV está de acordo com o que a literatura descreve, em que a condição LP acomete, em média, de 20% a 30% dos animais infectados (BIRGEL JUNIOR et al., 2006; COFFIN; HUGHES; VARMUS, 1997; FRY; MCGAVIN, 2009).

Em D0 realizou-se a contagem total e diferencial de leucócitos dos animais pertencentes ao grupo controle. Porém, devido ao número de animais que soroconverteram e que foram excluídos deste grupo, não foi possível utilizar as médias destas contagens, pois o número de animais restante foi pequeno para esta avaliação.

5.3.1 Soroconversão dos animais controles

Os animais controles foram acompanhados sorologicamente por 60 dias, através de três visitas com intervalo de 30 dias. Este acompanhamento foi realizado para verificar uma possível soroconversão durante o período de estudo e os animais que soroconverteram foram excluídos ao final do projeto. O número de soroconversões e a taxa de ataque encontram-se na Tabela 3.
Tabela 3 Prevalência do BLV e taxa de soroconversão dos animais controle nos rebanhos avaliados na mesorregião do Campo das Vertentes

<table>
<thead>
<tr>
<th>Fazenda</th>
<th>Percentual de soroportantes na triagem</th>
<th>Número de animais controles</th>
<th>Número de controles excluídos do trabalho</th>
<th>Número de soroconversão</th>
<th>Taxa de soroconversão</th>
</tr>
</thead>
<tbody>
<tr>
<td>E</td>
<td>85,05%</td>
<td>15</td>
<td>-1</td>
<td>9</td>
<td>64,28%</td>
</tr>
<tr>
<td>B</td>
<td>84,12%</td>
<td>32</td>
<td>-1</td>
<td>19</td>
<td>61,29%</td>
</tr>
<tr>
<td>C</td>
<td>82,96%</td>
<td>21</td>
<td>-2</td>
<td>11</td>
<td>57,89%</td>
</tr>
<tr>
<td>A</td>
<td>85,83%</td>
<td>12</td>
<td>-1</td>
<td>6</td>
<td>54,55%</td>
</tr>
<tr>
<td>G</td>
<td>77,66%</td>
<td>37</td>
<td>-9</td>
<td>11</td>
<td>39,28%</td>
</tr>
<tr>
<td>D</td>
<td>75,76%</td>
<td>30</td>
<td>-4</td>
<td>8</td>
<td>30,77%</td>
</tr>
<tr>
<td>F</td>
<td>73,28%</td>
<td>49</td>
<td>-21</td>
<td>6</td>
<td>21,43%</td>
</tr>
</tbody>
</table>

1 Fazendas H, I e J foram excluídas do estudo; 2 Animais que foram vendidos, descartados ou terminaram o período de lactação.

Todas as fazendas participantes do projeto apresentavam atividades de risco para a transmissão do BLV. Durante as coletas, foram presenciados o compartilhamento de agulhas para a aplicação de medicamentos e vacinas e a reutilização da luva de palpação sem antissepsia entre os usos. Em nenhuma das propriedades foi verificada sensibilidade dos trabalhadores em relação aos procedimentos profiláticos e de controle da LEB: o manejo era unificado, o controle na compra de animais era ausente e, até a realização deste estudo, não havia conhecimento da prevalência do BLV. Conclui-se que as elevadas incidências observadas devem-se, em grande parte, à ausência de medidas profiláticas da disseminação horizontal do BLV, o que leva à endemidade (KOBAYASHI, 2014; MENDES et al., 2011).

Todas as fazendas participantes receberam as informações sobre o diagnóstico sorológico do BLV de seus respectivos animais, assim como também foram informados sobre os fatores de risco associados à disseminação do vírus.
5.3.2 Prevalência da mastite e principais microrganismos isolados

Em D0 foram observados 48,98% de prevalência de mastite subclínica e 3,24% de mastite clínica e, em D60, a prevalência de mastite subclínica foi de 54,65% e a mastite clínica representou 5,67%. Os valores encontrados ficaram acima dos padrões estabelecidos para mastite subclínica (15%) e clínica (1%). Segundo Pardo et al. (1999), os índices de ocorrência de mastite subclínica no Brasil são da ordem de 72% e de 17,5% para mastite clínica, nos estados de Minas Gerais e São Paulo. Os valores encontrados neste trabalho ficaram abaixo destes índices e encontram-se de acordo com o relatado na literatura (BUENO et al., 2002; COSTA et al., 1999; FERREIRA et al., 2007; MARTINS et al., 2010; RIBEIRO et al., 2006).

Foi coletado um total de 395 amostras de leite (Tabela 4) de 247 animais, sendo 139 amostras do grupo SN, 178 pertencentes ao grupo SL e 78 pertencentes ao grupo LP, segundo classificação de Beindixen (1958). As amostras foram coletadas em quartos individuais, podendo ter tido mais de uma amostra por animal. Das 395 amostras, 5 (1,26%) estavam contaminadas, ou seja, houve crescimento de três ou mais tipos diferentes de colônias; 97 (24,5%) não apresentaram crescimento e 18 (4,55%) apresentaram crescimento misto. Dessa forma, foram isolados 311 microrganismos.
O índice de amostras que não apresentaram crescimento (24,5%) foi semelhante ao encontrado por Mota et al. (2012), que observaram 31,5% de amostras negativas, e foi maior que o observado por Costa (2008), que foi de 7,41% e por Santos, Pedroso e Guirro (2010), que observou 10,77%. A ausência de crescimento pode ser justificada por eliminação do agente etiológico pelo sistema imune do animal, infecção causada por patógenos que não são detectados pelos exames bacteriológicos usualmente utilizados na rotina laboratorial ou a mastite pode ser de origem não infecciosa (COSTA, 2008; DELLA LIBERA et al., 2011).

No presente trabalho foi observado o aumento de isolamento de microrganismos conforme o aumento do escore de CMT (Tabela 5). Segundo Barbalho e Mota (2011) e Saab et al. (2014), quanto maior é o escore do CMT maior é a probabilidade de isolamento dos agentes, o que demonstra associação entre o teste de CMT e a análise microbiológica.
Tabela 5 Número de microrganismos isolados de acordo com o escore do CMT e a condição nosológica dos animais.

<table>
<thead>
<tr>
<th>Grupo</th>
<th>Número de microrganismos isolados distribuídos por escores de CMT</th>
<th>Total por grupo</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>2(+)</td>
<td>3(++)</td>
</tr>
<tr>
<td>SN</td>
<td>24</td>
<td>25</td>
</tr>
<tr>
<td>SL</td>
<td>33</td>
<td>42</td>
</tr>
<tr>
<td>LP</td>
<td>17</td>
<td>14</td>
</tr>
<tr>
<td>Total por score:</td>
<td>74</td>
<td>81</td>
</tr>
</tbody>
</table>

1 Classificação segundo Beindixen (1958).

Na Tabela 6 apresenta-se a distribuição das frequências dos microrganismos isolados em D0 e D60, por escore e pela condição sorológica anti-BLV apresentada pelos animais.
Tabela 6 Frequência dos microrganismos isolados em D0 e D60, classificados de acordo com a condição nosológica\(^2\) dos animais.

<table>
<thead>
<tr>
<th></th>
<th>SN D0</th>
<th>SN D60</th>
<th>SL D0</th>
<th>SL D60</th>
<th>LP D0</th>
<th>LP D60</th>
<th>Total D0+D60</th>
</tr>
</thead>
<tbody>
<tr>
<td>Bacillus spp.</td>
<td>1</td>
<td>8</td>
<td>0</td>
<td>7</td>
<td>0</td>
<td>9</td>
<td>25</td>
</tr>
<tr>
<td>Coliformes</td>
<td>0</td>
<td>9</td>
<td>3</td>
<td>5</td>
<td>1</td>
<td>1</td>
<td>19</td>
</tr>
<tr>
<td>Corynebacterium spp.</td>
<td>4</td>
<td>2</td>
<td>8</td>
<td>4</td>
<td>1</td>
<td>4</td>
<td>23</td>
</tr>
<tr>
<td>Enterococcus spp.</td>
<td>7</td>
<td>6</td>
<td>4</td>
<td>11</td>
<td>0</td>
<td>1</td>
<td>29</td>
</tr>
<tr>
<td>Leveduras</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>4</td>
<td>0</td>
<td>1</td>
<td>6</td>
</tr>
<tr>
<td>Proteus spp.</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>3</td>
<td>0</td>
<td>4</td>
</tr>
<tr>
<td>Staphylococcus aureus</td>
<td>2</td>
<td>4</td>
<td>1</td>
<td>2</td>
<td>1</td>
<td>1</td>
<td>11</td>
</tr>
<tr>
<td>Staphylococcus spp.(^1)</td>
<td>22</td>
<td>26</td>
<td>20</td>
<td>47</td>
<td>8</td>
<td>17</td>
<td>140</td>
</tr>
<tr>
<td>Streptococcus agalactiae</td>
<td>2</td>
<td>6</td>
<td>7</td>
<td>2</td>
<td>0</td>
<td>0</td>
<td>17</td>
</tr>
<tr>
<td>Streptococcus spp.</td>
<td>2</td>
<td>2</td>
<td>6</td>
<td>10</td>
<td>1</td>
<td>6</td>
<td>27</td>
</tr>
<tr>
<td>Streptococcus uberis</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>7</td>
<td>0</td>
<td>3</td>
<td>10</td>
</tr>
<tr>
<td>Total</td>
<td>41</td>
<td>64</td>
<td>49</td>
<td>99</td>
<td>15</td>
<td>43</td>
<td>311</td>
</tr>
</tbody>
</table>

\(^1\) Coagulase negativo; \(^2\) Classificação segundo Beindixen (1958).
Dos 311 microrganismos isolados, os contagiosos foram 191 (61,41% dos isolamentos) e os patógenos ambientais eram 120 isolados (38,59%). Segundo Zschöck et al. (2000), os microrganismos de origem contagiosa são os mais prevalentes, o que corrobora os resultados encontrados neste trabalho.

Entre os patógenos contagiosos, foram observados *Staphylococcus* spp. coagulase negativos (73,30%), *Corynebacterium* spp. (12,04%), *Streptococcus agalactiae* (8,90%), e *Staphylococcus aureus* (5,76%).

Staphylococcus spp. coagulase negativos tornaram-se os isolados mais comuns nos casos de mastite bovina em muitos países e, portanto, poderiam ser considerados como patógenos emergentes (BARBALHO; MOTA, 2001; MOTA et al., 2012). Na literatura são encontrados trabalhos que relatam o isolamento de *Staphylococcus* spp. coagulase negativos com porcentagens que variam de 16,6% a 74,60% (COSTA et al., 1995; FERREIRA et al., 2007; LARANJA; MACHADO, 1994; OLIVEIRA et al., 2011; RUIZ et al., 2011; SAAB et al., 2014; VIANNI; NADER FILHO; LANGEWEBGER, 1992).

As principais vias de transmissão de *Staphylococcus* spp. coagulase negativos são as mãos dos ordenhadores e os equipamentos de ordenha. As medidas de controle e profilaxia para reduzir o índice de isolamento destes agentes devem ser direcionadas para atuar no ponto crítico de sua disseminação e estão relacionados, principalmente, ao processo de ordenha (MOTA et al., 2012). Segundo Santos, Pedroso e Guirro (2010), o controle desses agentes está relacionado com a adoção de boas práticas de higiene e manuseio do rebanho durante a ordenha, podendo-se, dessa forma, deduzir que os rebanhos avaliados apresentam falhas na implementação de boas práticas na ordenha.

Corynebacterium spp. é um dos agentes mais comumente isolados (BRITO et al., 1999; COSTA et al., 1995; DAMBRÓS et al., 2013; HALTIA et al., 2006). Costa et al. (1995) acreditam que este agente possa afetar a CCS individual e do rebanho, além de já ter sido relatado como causa de mastite
clínica. Em contrapartida, tem sido sugerido que este microrganismo tem um efeito protetor nos quartos infectados contra infecções subseqüentes provocadas por patógenos maiores, como *Staphylococcus aureus* e *Streptococcus agalactiae* (RUIZ et al., 2011).

Segundo Hillerton (1996) e Santos e Fonseca (2007), *S. agalactiae* são os microrganismos mais bem adaptados à glândula mamária e raramente são encontrados fora dela; geralmente estão envolvidos em doenças clínicas agudas e infecções subclínicas persistentes. *S. agalactiae* representou 8,90% entre os isolados contagiosos e 5,47% (17/311) entre todos os microrganismos isolados. Santos, Pedroso e Guirro (2010) isolaram este agente em 3,5% de todas as suas amostras com crescimento, valor próximo ao encontrado neste trabalho. *S. agalactiae* foi o terceiro patógeno contagioso mais frequente entre os isolados.

Segundo Almeida et al. (1996), *Staphylococcus aureus* é capaz de invadir e se replicar dentro das células epiteliais da glândula mamária bovina, podendo esse mecanismo ser um pré-requisito para a infecção, além de levar a resultados falso negativos nos exames bacteriológicos.

Segundo Mota et al. (2012), os índices de isolamento de *S. aureus* variam entre 9,1% e 85%. Barbalho e Mota (2001) verificaram índices menores, variando de 19% a 40,7%. Haltia et al. (2006) isolaram *S. aureus* em 6,5% das amostras; Costa (2008a), 34,29% e Oliveira et al. (2011), 17,7%, entre os microrganismos causadores de mastite subclínica. Neste trabalho foram isolados 5,76% de *S. aureus* entre os isolados contagiosos, o que representou 3,54% (11/311) entre todos os microrganismos isolados.

A mastite contagiosa é causada por patógenos adaptados ao interior da glândula mamária e a superfície da pele dos tetos. Sendo assim, a transmissão ocorre, principalmente, durante a ordenha, por meio das mãos dos ordenhadores, do compartilhamento de panos para secagem dos tetos e de teteiras.
Entre os 38,59% de patógenos ambientais foram isolados *Enterococcus* spp. (24,17%), *Streptococcus* spp. (22,50%), *Bacillus* spp. (20,83%), coliformes (15,83%), *Streptococcus uberis* (8,33%), leveduras (5,00%) e *Proteus* spp. (3,33%).

Streptococcus spp., *Streptococcus uberis*, *Enterococcus* spp. e os coliformes são considerados patógenos ambientais, pois a fonte de infecção para o rebanho é o próprio ambiente da fazenda e, assim, as medidas profiláticas envolvem o controle de patógenos no meio (HOGAN; WHITE; PANKEY, 1987).

Bacillus spp. é um patógeno oportunista e acredita-se que seu percentual deve ser considerado por poderem estar envolvidos com casos de mastites fatais (BARBALHO; MOTA, 2001). Estes mesmos autores encontraram este agente em 10,85% de suas amostras. Akram et al. (2013) encontraram 6,94%, resultados semelhantes ao encontrado neste estudo, quando se avaliou a prevalência deste agente entre todos os isolados (8,04%).

Segundo Costa et al. (2008), as leveduras apresentam pouca expressão na etiologia da mastite, predominando em casos subclínicos, e estão presentes no ambiente da ordenha. Altas taxas de isolamento deste agente são um indicativo de falhas na coleta das amostras. Estes autores isolaram 3,4% de leveduras; no presente estudo, foram isoladas 1,93% de leveduras entre todos os isolados.

De acordo com Langoni (2013), para que ocorra a diminuição da ocorrência de patógenos ambientais, deve haver intervenção no entorno do local onde os animais são mantidos e criados, como piso de estábulos e da cama do *free stall* onde os animais são mantidos e evitar que as vacas se deitem logo após a saída da sala de ordenha, momento em que o esfincter do teto está dilatado e permite a penetração de microrganismos presentes no solo contaminado.

A análise microbiológica é fundamental para a adoção de medidas específicas de controle, a identificação de patógenos emergentes, a segregação e
o descarte de animais com infecção crônica, a evolução da eficácia do tratamento e o estabelecimento de padrões de susceptibilidade a antimicrobianos (BELOTI et al., 1997; RUIZ et al., 2011). Dada a natureza multifatorial da mastite, a gestão econômica é composta por uma gama de atividades, entre outros o tratamento de vacas com mastite (clínica ou subclínica), terapia da vaca seca e a prevenção da transmissão de infecções (HOGEVEEN, 2005).

5.3.3 Intercorrência entre a mastite e a infecção pelo BLV

As categorias SN, SL e LP foram testadas por meio do teste qui-quadrado, para investigar a correlação entre a mastite clínica e a condição nosológica de cada grupo. Considerou-se o animal com mastite clínica quando observadas alterações nos quartos avaliados, como presença de pus e sangue, em, pelo menos, uma avaliação em D0 ou D60 e em, pelo menos, um quarto mamário.

Observou-se diferença significativa entre as categorias SN e SL, segundo a classificação de Beindixen (1958), e a incidência da mastite clínica (p = 0,047). Na tabela 7 são apresentadas as frequências absolutas e relativas de mastite clínica e as condições SN e SL.

<table>
<thead>
<tr>
<th>SN</th>
<th>Mastite clínica</th>
<th>Total</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Negativo</td>
<td>Positivo</td>
</tr>
<tr>
<td>Fa</td>
<td>77</td>
<td>10</td>
</tr>
<tr>
<td>Fr</td>
<td>88,5%</td>
<td>11,5%</td>
</tr>
<tr>
<td>SL</td>
<td>114</td>
<td>5</td>
</tr>
<tr>
<td>Fa</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Fr</td>
<td>95,8%</td>
<td>4,2%</td>
</tr>
<tr>
<td>Total</td>
<td>191</td>
<td>15</td>
</tr>
<tr>
<td>Fr</td>
<td>92,7%</td>
<td>7,3%</td>
</tr>
</tbody>
</table>

1 Classificação segundo Beindixen (1958).
Embora tenha sido detectada a associação entre a mastite clínica e a condição nosológica SN e SL, no presente trabalho não foi possível afirmar se a condição SL é um fator de proteção ou de risco, visto que a Odds Ratio variou de 0,111-1,027. É necessário que se amplie a amostragem para avaliar o risco de incidência da mastite clínica frente à infecção pelo BLV. Em relação à condição LP, não foi verificada associação com a incidência da mastite clínica.

Determinou-se uma variável qualitativa para a mastite subclínica, considerando o animal positivo quando verificado escore maior ou igual a 2 (dois) no CMT em pelo menos uma coleta, D0 ou D60, e em pelo menos um quarto mamário. Avaliaram-se a condição mastite subclínica e a condição nosológica dos animais, assim como a origem do agente causador da mastite, que foi dicotomizado em contagioso e ambiental.

Não houve correlação significativa (p>0,05) entre a mastite subclínica e a condição nosológica dos animais, pelas chaves hematológicas de Beindixen (1958) e Ressang, Mastebroek e Quak (1976), assim como a origem do agente causador da mastite (ambiental ou contagioso).

Sandev et al. (2004) observaram maior incidência de mastite em animais com LP, seguida dos animais sem linfocitose persistente e, por último, os animais soronegativos. Diferente do observado por estes autores, no presente estudo foi encontrada associação entre a mastite clínica e animais sem linfocitose persistente (SL), não se podendo afirmar se essa condição oferece risco ou proteção à incidência da mastite clínica.

Diante do resultado obtido conclui-se que existe uma relação de maior risco para o desenvolvimento de mastite em bovinos leiteiros infectados pelo
BLV, sem linfocitose. Entretanto, as discrepâncias observadas entre SL e LP no presente estudo e os dados disponíveis na literatura sugerem a participação de outros atores nesse processo que, no presente trabalho, não se conseguiu isolar. Variáveis ambientais e genéticas dos bovinos, diferenças de virulência entre isolados de BLV e de manejo possivelmente atuam na intercorrência da infecção pelo BLV e a incidência de mastites, mascarando a real participação do BLV na população estudada, sobretudo entre os bovinos com LP.

6 CONCLUSÃO

Diante dos dados obtidos é possível se concluir que:
1. o BLV encontra-se amplamente disseminado nos rebanhos leiteiros envolvidos;
2. vacas com quatro ou mais partos apresentaram, em média, duas vezes mais chances de estarem infectadas com o BLV em relação às demais;
3. as prevalências de mastite subclínica e clínica encontram-se acima dos parâmetros considerados aceitáveis, porém, estão de acordo com a realidade observada em outras regiões;
4. os principais microrganismos responsáveis pela mastite nos rebanhos avaliados são de origem contagiosa;
5. a incidência da mastite clínica é mais provável de ser observada entre bovinos infectados pelo BLV, sem linfocitose persistente.
REFERÊNCIAS

BRITO, M. A. V. P. et al. O padrão de infecção intramamária em rebanhos leiteiros: exame de todos os quartos mamários das vacas em lactação. *Arquivo*

FORLETTI, A. et al. Identification of cattle carrying alleles associated with resistance and susceptibility to the Bovine Leukemia Virus progression by real-

INSTITUTO BRASILEIRO DE GEOGRAFIA E ESTATÍSTICA. **Pesquisa da pecuária municipal**. Rio de Janeiro, 2011. Disponível em:

Dissertação (Mestrado em Ciência Animal) - Universidade Federal de Minas Gerais, Belo Horizonte, 2008.

