Use este identificador para citar ou linkar para este item: http://repositorio.ufla.br/jspui/handle/1/13179
Registro completo de metadados
Campo DCValorIdioma
dc.creatorBarbosa, Bruno H. G.-
dc.creatorBui, Lam T.-
dc.creatorAbbass, Hussein A.-
dc.creatorAguirre, Luis A.-
dc.creatorBraga, Antônio P.-
dc.date.accessioned2017-06-06T20:51:12Z-
dc.date.available2017-06-06T20:51:12Z-
dc.date.issued2011-09-
dc.identifier.citationBARBOSA, B. H. G. et al. The use of coevolution and the artificial immune system for ensemble learning. Soft Computing, [S. l.], v. 15, n. 9, p. 1735–1747, Sept. 2011.pt_BR
dc.identifier.urihttps://link.springer.com/article/10.1007/s00500-010-0613-zpt_BR
dc.identifier.urihttp://repositorio.ufla.br/jspui/handle/1/13179-
dc.description.abstractThis paper presents two new approaches for constructing an ensemble of neural networks (NN) using coevolution and the artificial immune system (AIS). These approaches are extensions of the CLONal Selection Algorithm for building ENSembles (CLONENS) algorithm. An explicit diversity promotion technique was added to CLONENS and a novel coevolutionary approach to build neural ensembles is introduced, whereby two populations representing the gates and the individual NN are coevolved. The former population is responsible for defining the ensemble size and selecting the members of the ensemble. This population is evolved using the differential evolution algorithm. The latter population supplies the best individuals for building the ensemble, which is evolved by AIS. Results show that it is possible to automatically define the ensemble size being also possible to find smaller ensembles with good generalization performance on the tested benchmark regression problems. More interestingly, the use of the diversity measure during the evolutionary process did not necessarily improve generalization. In this case, diverse ensembles may be found using only implicit diversity promotion techniques.pt_BR
dc.languageen_USpt_BR
dc.publisherSpringerpt_BR
dc.rightsrestrictAccesspt_BR
dc.sourceSoft Computingpt_BR
dc.subjectNeural networkspt_BR
dc.subjectDifferential evolutionpt_BR
dc.subjectCoevolutionpt_BR
dc.subjectArtificial immune systempt_BR
dc.subjectRedes neuraispt_BR
dc.subjectEvolução diferencialpt_BR
dc.subjectCoevoluçãopt_BR
dc.subjectSistema imunológico artificialpt_BR
dc.titleThe use of coevolution and the artificial immune system for ensemble learningpt_BR
dc.typeArtigopt_BR
Aparece nas coleções:DEG - Artigos publicados em periódicos

Arquivos associados a este item:
Não existem arquivos associados a este item.


Os itens no repositório estão protegidos por copyright, com todos os direitos reservados, salvo quando é indicado o contrário.