Please use this identifier to cite or link to this item:
http://repositorio.ufla.br/jspui/handle/1/15325
Full metadata record
DC Field | Value | Language |
---|---|---|
dc.creator | Gebert, Deyse Márcia Pacheco | - |
dc.creator | Ferreira, Daniel Furtado | - |
dc.date.accessioned | 2017-09-04T16:34:11Z | - |
dc.date.available | 2017-09-04T16:34:11Z | - |
dc.date.issued | 2010-04 | - |
dc.identifier.citation | GEBERT, D. M. P.; FERREIRA, D. F. Proposta de teste bootstrap não-paramétrico de retenção do número de componentes principais. Revista Brasileira de Biometria, São Paulo, v. 28, n. 2, p. 116-136, abr./jun. 2010. | pt_BR |
dc.identifier.uri | http://jaguar.fcav.unesp.br/RME/fasciculos/v28/v28_n2/A8_Deyse_Daniel.pdf | pt_BR |
dc.identifier.uri | repositorio.ufla.br/jspui/handle/1/15325 | - |
dc.description.abstract | One of the many goals of the multivariate analysis is to reduce dimensionality, i.e., search for more parsimonious models. In this sense, the technique of principal component can be used. After the principal components were determined one should choose the ideal number of components to be retained in order to synthesize the information contained in the p original variables in a simplified model. Some criteria for this choice are proposed in the literature, most of them have serious limitations that were used as justification for this study. the aim of this study was to propose a new test for determining the optimal number of principal components to be retained, based on the proportion of explanation of the total variation of the k first components (k<p). The evaluation of type i error rates, power and robustness of these tests was made by Monte Carlo simulations. This test was compared with Fujikoshi's test. Under multivariate normality the Fujikoshi's test is recommended, since it showed the highest power and controlled the type i error. under non-normality the non-parametric bootstrap test was considered robust, since it controlled the type i error and should be recommended. | pt_BR |
dc.language | pt_BR | pt_BR |
dc.publisher | Universidade Estadual Paulista | pt_BR |
dc.rights | restrictAccess | pt_BR |
dc.source | Revista Brasileira de Biometria | pt_BR |
dc.subject | Análise multivariada | pt_BR |
dc.subject | teste bootstrap | pt_BR |
dc.subject | Análise de componentes principais | pt_BR |
dc.subject | Multivariate analysis | pt_BR |
dc.subject | Test bootstrap | pt_BR |
dc.subject | Principal component analysis | pt_BR |
dc.title | Proposta de teste bootstrap não-paramétrico de retenção do número de componentes principais | pt_BR |
dc.title.alternative | On nonparametric Bootstrap test for the retained number of principal components | pt_BR |
dc.type | Artigo | pt_BR |
dc.description.resumo | Uma de muitas metas da análise multivariada é a redução da dimensionalidade, ou seja, a busca por modelos mais parcimoniosos. Neste sentido, uma técnica utilizada é a análise de componentes principais. Após a determinação dos componentes principais deve-se definir qual o número ideal a ser usado, de modo a sintetizar a informação contida nas variáveis originais em um modelo mais simplificado. Alguns critérios para essa escolha são propostos na literatura, a maioria deles possui sérias limitações, como por exemplo a pressuposição de normalidade dos dados, sendo essa uma justificativa para esse estudo. O objetivo deste trabalho é propor um novo teste para a determinação do número de componentes principais a serem retidos, onde não seja necessário o conhecimento da distribuição dos dados originais. A avaliação do desempenho desse teste foi feita por meio de simulações Monte Carlo. Tal teste foi comparado com o teste de Fujikoshi. Sob normalidade multivariada o teste de Fujikoshi é recomendado, pois apresentou maiores valores de poder e controlou o erro tipo I. Sob não-normalidade o teste \emph{bootstrap} não-paramétrico é recomendado por ser robusto, sendo que controlou o erro tipo I e o teste de Fujikoshi não | pt_BR |
Appears in Collections: | DEX - Artigos publicados em periódicos |
Files in This Item:
There are no files associated with this item.
Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.