Use este identificador para citar ou linkar para este item: http://repositorio.ufla.br/jspui/handle/1/1918
Registro completo de metadados
Campo DCValorIdioma
dc.creatorBatista, André Luiz França-
dc.date.accessioned2014-08-01T11:49:06Z-
dc.date.available2014-08-01T11:49:06Z-
dc.date.copyright2009-
dc.date.issued2014-08-01-
dc.date.submitted2009-11-23-
dc.identifier.citationBATISTA, A. L. F. Análise e previsões de vazões utilizando modelos de séries temporais e redes neurais artificiais. 2009. 79 p. Dissertação (Mestrado em Engenharia de Sistemas)-Universidade Federal de Lavras, Lavras, 2009.pt_BR
dc.identifier.urihttp://repositorio.ufla.br/jspui/handle/1/1918-
dc.languagept_BRpt_BR
dc.publisherUNIVERSIDADE FEDERAL DE LAVRASpt_BR
dc.rightsacesso abertopt_BR
dc.subjectRedes neurais artificiaispt_BR
dc.subjectVazão fluvialpt_BR
dc.subjectSéries temporaispt_BR
dc.subjectAnálise de séries temporaispt_BR
dc.subjectBacias fluviais - Vazãopt_BR
dc.subjectArtificial neural networkspt_BR
dc.subjectRiver flowpt_BR
dc.subjectTime seriespt_BR
dc.subjectModelo SARIMApt_BR
dc.titleModelos de séries temporais e redes neurais na previsão de vazãopt_BR
dc.title.alternativeRiver flow analysis and forecasting using time series and artificial neural networks modelspt_BR
dc.typedissertaçãopt_BR
dc.contributor.advisor-coLacerda, Wilian Soares-
dc.publisher.programDEG - Programa de Pós-graduaçãopt_BR
dc.publisher.initialsUFLApt_BR
dc.publisher.countryBRASILpt_BR
dc.description.concentrationModelos de Sistemas Biológicospt_BR
dc.contributor.advisor1Sáfadi, Thelma-
dc.contributor.referee1Braga Júnior, Roberto Alves-
dc.description.resumoA previsão do comportamento hidrológico de rios afluentes a reservatórios de usinas hidroelétricas consiste em uma das principais ferramentas para gestão da produção de energia elétrica brasileira. Conhecer os valores futuros da vazão de um rio é de extrema importância para o planejamento dos sistemas hidroelétricos. Diante desse contexto, o presente trabalho investiga duas metodologias distintas para realizar previsão de séries temporais de vazões fluviais: Box & Jenkins e Redes Neurais Artificiais. Os dados utilizados neste trabalho são os valores da vazão média mensal do Rio Grande. O conjunto de dados consiste em 216 observações que abrangem desde Janeiro/1990 a Dezembro/2007. Foram construídos modelos originados da metodologia sugerida por Box & Jenkins e também modelos baseados na técnica de Redes Neurais Artificiais. Tais modelos foram avaliados de acordo com o critério do EQMP e MAPE para que os melhores modelos para a série temporal em estudo fossem selecionados. O modelo estatístico que melhor se adequou ao conjunto de dados foi um SARIMA(0,1,1)(0,1,2)12. O modelo de redes neurais que teve melhor adequação junto ao conjunto de dados foi uma MLP(12,20,1). Os modelos selecionados foram empregados para prever valores futuros da série histórica de vazões naturais do Rio Grande (posto fluviométrico de Madre de Deus de Minas, MG). Foi realizada uma análise comparativa entre ambas as técnicas empregadas no prognóstico da série temporal. Os resultados obtidos na comparação mostram que cada metodologia pode ser ajustada adequadamente ao conjunto de observações em estudo, entretanto cada técnica possui vantagens e desvantagens. A metodologia de Box & Jenkins tem como ponto a seu favor o fato de extrair informações importantes sobre a série temporal, tais como: identificação de ciclos e tendências. Tal extração de informações da série não ocorre na técnica de Redes Neurais Artificiais, o que se torna um ponto negativo para essa técnica. Para a série de vazões do Rio Grande, o ponto positivo da utilização de Redes Neurais foi a obtenção de valores de previsão mais precisos do que os obtidos pelos modelos estatísticos propostos por Box & Jenkins.pt_BR
dc.description.resumoForecasting the hydrological behavior of inflowing rivers into reservoirs of hydroelectric plants is one of the main tools for managing the production of electric power in Brazil. Knowing the future values of a river’s flow is critical when planning hydroelectric systems. Considering such background, this work aims at investigating two different methods to forecast time series of river flows: Box & Jenkins and Artificial Neural Networks. The data used in this work are the values of average monthly flow of Rio Grande (stream gauge station of Madre de Deus de Minas, MG). The data set consists of 216 observations that were done between January/1990 to December/2007. Models originated from the Box & Jenkins method, as well as models based on the Artificial Neural Networks technique, have been constructed. These models were evaluated according to the EQMP and MAPE criteria in order to select the best models for the studied time series. The statistical model that best suited the data set was a SARIMA(0,1,1)(0,1,2)12. The neural networks model that best adjusted to the data set was an MLP(12,20,1). The selected models were used to forecast future values of the historical series of Rio Grande’s natural flows. A comparative analysis between both techniques used at the prognostication of time series has been done. The results obtained from this comparison have shown that each method can be adequately adjusted to the set of studied observations; however, each technique has both advantages and disadvantages. The Box & Jenkins method has as an advantage the fact that it extracts important information from the time series, such as identification of cycles and trends. This extraction of information from the series does not occur in the Artificial Neural Networks technique, which is a drawback to this technique. In Rio Grande’s flow series, the positive aspect of using Neural Networks was that the obtained prediction values were more accurate than the ones from the statistical models proposed by Box & Jenkins.pt_BR
dc.subject.cnpqCNPQ_NÃO_INFORMADOpt_BR
Aparece nas coleções:Engenharia de Sistemas e automação (Dissertações)

Arquivos associados a este item:
Arquivo Descrição TamanhoFormato 
DISSERTAÇÃO_Modelos de séries temporais e redes neurais na previsão de vazão.pdf501,45 kBAdobe PDFVisualizar/Abrir


Os itens no repositório estão protegidos por copyright, com todos os direitos reservados, salvo quando é indicado o contrário.