Please use this identifier to cite or link to this item: http://repositorio.ufla.br/jspui/handle/1/28799
Full metadata record
DC FieldValueLanguage
dc.creatorCabella, Brenno Caetano Troca-
dc.creatorRibeiro, Fabiano-
dc.creatorMartinez, Alexandre Souto-
dc.date.accessioned2018-03-05T19:17:09Z-
dc.date.available2018-03-05T19:17:09Z-
dc.date.issued2012-02-15-
dc.identifier.citationCABELLA, B. C. T.; RIBEIRO, F.; MARTINEZ, A. S. Effective carrying capacity and analytical solution of a particular case of the Richards-like two-species population dynamics model. Physica A: Statistical Mechanics and its Applications, [S. l.], v. 391, n. 4, p. 1281-1286, 15 Feb. 2012.pt_BR
dc.identifier.urihttps://www.sciencedirect.com/science/article/pii/S0378437111008533#!pt_BR
dc.identifier.urihttp://repositorio.ufla.br/jspui/handle/1/28799-
dc.description.abstractWe consider a generalized two-species population dynamic model and analytically solve it for the amensalism and commensalism ecological interactions. These two-species models can be simplified to a one-species model with a time dependent extrinsic growth factor. With a one-species model with an effective carrying capacity one is able to retrieve the steady state solutions of the previous one-species model. The equivalence obtained between the effective carrying capacity and the extrinsic growth factor is complete only for a particular case, the Gompertz model. Here we unveil important aspects of sigmoid growth curves, which are relevant to growth processes and population dynamics.pt_BR
dc.languageen_USpt_BR
dc.publisherElsevierpt_BR
dc.rightsrestrictAccesspt_BR
dc.sourcePhysica A: Statistical Mechanics and its Applicationspt_BR
dc.subjectPopulation dynamicspt_BR
dc.subjectGrowth modelspt_BR
dc.subjectRichards modelpt_BR
dc.subjectDinâmica populacionalpt_BR
dc.subjectModelos de crescimentopt_BR
dc.subjectModelo Richardspt_BR
dc.titleEffective carrying capacity and analytical solution of a particular case of the Richards-like two-species population dynamics modelpt_BR
dc.typeArtigopt_BR
Appears in Collections:DFI - Artigos publicados em periódicos

Files in This Item:
There are no files associated with this item.


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.