Use este identificador para citar ou linkar para este item: http://repositorio.ufla.br/jspui/handle/1/30407
Registro completo de metadados
Campo DCValorIdioma
dc.creatorOliveira, Ludmila Cristina-
dc.creatorOliveira, Maria do Socorro Padilha de-
dc.creatorDavide, Lisete Chamma-
dc.creatorTorres, Giovana Augusta-
dc.date.accessioned2018-09-11T18:19:12Z-
dc.date.available2018-09-11T18:19:12Z-
dc.date.issued2016-01-22-
dc.identifier.citationOLIVEIRA, L. C. et al. Karyotype and genome size in Euterpe Mart. (Arecaceae) species. Comparative Cytogenetics, [S.l.], v. 10, n. 1, p. 17-25, Jan. 2016.pt_BR
dc.identifier.urihttp://repositorio.ufla.br/jspui/handle/1/30407-
dc.description.abstractEuterpe (Martius, 1823), a genus from Central and South America, has species with high economic importance in Brazil, because of their palm heart and fruits, known as açaí berries. Breeding programs have been conducted to increase yield and establish cultivation systems to replace the extraction of wild material. These programs need basic information about the genome of these species to better explore the available genetic variability. The aim of this study was to compare E. edulis (Martius, 1824), E. oleracea (Martius, 1824) and E. precatoria (Martius, 1842), with regard to karyotype, type of interphase nucleus and nuclear DNA amount. Metaphase chromosomes and interphase nuclei from root tip meristematic cells were obtained by the squashing technique and solid stained for microscope analysis. The DNA amount was estimated by flow cytometry. There were previous reports on the chromosome number of E. edulis and E. oleracea, but chromosome morphology of these two species and the whole karyotype of E. precatoria are reported for the first time. The species have 2n=36, a number considered as a pleisomorphic feature in Arecoideae since the modern species, according to floral morphology, have the lowest chromosome number (2n=28 and 2n=30). The three Euterpe species also have the same type of interphase nuclei, classified as semi-reticulate. The species differed on karyotypic formulas, on localization of secondary constriction and genome size. The data suggest that the main forces driving Euterpe karyotype evolution were structural rearrangements, such as inversions and translocations that alter chromosome morphology, and either deletion or amplification that led to changes in chromosome size.pt_BR
dc.languageen_USpt_BR
dc.publisherPensoft Publisherspt_BR
dc.rightsAttribution 4.0 International*
dc.rightsacesso abertopt_BR
dc.rights.urihttp://creativecommons.org/licenses/by/4.0/*
dc.sourceComparative Cytogeneticspt_BR
dc.subjectC-valuept_BR
dc.subjectInterphase nucleuspt_BR
dc.subjectChromosomal evolutionpt_BR
dc.subjectFlow cytometrypt_BR
dc.titleKaryotype and genome size in Euterpe Mart. (Arecaceae) speciespt_BR
dc.typeArtigopt_BR
Aparece nas coleções:DBI - Artigos publicados em periódicos

Arquivos associados a este item:
Arquivo Descrição TamanhoFormato 
ARTIGO_Karyotype and genome size in Euterpe Mart. (Arecaceae) species.pdf476,85 kBAdobe PDFVisualizar/Abrir


Este item está licenciada sob uma Licença Creative Commons Creative Commons