Please use this identifier to cite or link to this item: http://repositorio.ufla.br/jspui/handle/1/33256
metadata.teses.dc.title: Redes bayesianas na predição de valores energéticos de alimentos para aves
metadata.teses.dc.title.alternative: Bayesian networks in the prediction of energy values of feedstuffs for poultry
metadata.teses.dc.creator: Alvarenga, Tatiane Carvalho
metadata.teses.dc.creator.Lattes: http://lattes.cnpq.br/5717711361705067
metadata.teses.dc.contributor.advisor1: Lima, Renato Ribeiro de
metadata.teses.dc.contributor.referee1: Bueno Filho, Júlio Sílvio de Sousa
metadata.teses.dc.contributor.referee2: Muniz, Joel Augusto
metadata.teses.dc.contributor.referee3: Rodrigues, Paulo Borges
metadata.teses.dc.contributor.referee4: Mariano, Flávia Cristina Martins Queiroz
metadata.teses.dc.subject: Algoritmo híbrido mmhc
Distribuição empírica
Energia metabolizável
Equações de predição
Nutrição de aves
Empirical distribution
Hybrid algorithm mmhc
Metabolizable energy
Nutrition of monogastric
Prediction equations
metadata.teses.dc.date.issued: 21-Mar-2019
metadata.teses.dc.description.sponsorship: Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)
metadata.teses.dc.identifier.citation: ALVARENGA, T. C. Redes bayesianas na predição de valores energéticos de alimentos para aves. 2019. 101 p. Tese (Doutorado em Estatística e Experimentação Agropecuária)-Universidade Federal de Lavras, Lavras, 2019.
metadata.teses.dc.description.resumo: Rações balanceadas para a nutrição de aves dependem do conhecimento da composição química dos alimentos, em especial dos valores de energia metabolizável aparente corrigida pelo balanço de nitrogênio (EMAn). Os valores de EMAn podem ser obtidos em ensaios biológicos, em que a execução é demorada e de custo elevado, assim como pelas tabelas de composição de alimentos. Outro meio de se obter os valores de EMAn são as equações de predição estabelecidas em função da composição química dos alimentos, normalmente de fácil e rápida obtenção. Na literatura existem trabalhos que obtiveram as equações de predição por meio de regressão múltipla, meta-análise e redes neurais. Com o objetivo de encontrar resultados mais acurados, emprega-se as redes bayesianas para predizer a EMAn em função da composição química dos alimentos. As redes bayesianas são modelos gráficos (graphical models), os quais consistem na representação gráfica (grafo) e probabilística (distribuições de probabilidade condicionais e conjunta) das variáveis. Redes bayesianas foram propostas por Judea Pearl, então conhecido por defender o conhecimento probabilístico no campo da inteligência artificial. Para uma ampla compreensão sobre esta área de pesquisa, utilizou-se a base Web of Science da Thomson Reuters para identificar os padrões e tendências das publicações científicas sobre as redes bayesianas, permitindo assim, verificar que a maioria das publicações estão relacionadas à área de Ciências da Computação. Nas áreas aplicadas, principalmente agropecuária, ainda se têm pouquíssimas publicações, no entanto, redes bayesianas é uma linha de pesquisa inédita na nutrição de aves e que pode ser estudada por pesquisadores que tem o interesse na predição dos valores de energia metabolizável. Equações foram propostas por meio das redes bayesianas sendo obtidas pelo algoritmo Max-Min Hill Climbing (MMHC) e as mesmas podem ser utilizadas pela indústria de frangos de corte na elaboração de rações, pois apresentaram acurácia na predição de EMAn. Além do mais, as mesmas foram validadas com dados provenientes de ensaios metabólicos e apresentaram precisão e acurácia na predição dos valores energéticos. Essas equações estão disponíveis em uma calculadora que pode ser instalada em celulares, tablets e computadores. Nesta tese também foi proposta uma nova abordagem metodológica na qual considerou incertezas na obtenção de equações a partir de resultados de redes bayesianas híbridas. As estimativas provenientes de médias e modas dos coeficientes das composições químicas dos alimentos advindos de distribuições empíricas construídas com 10000 redes bayesianas híbridas tiveram melhores desempenhos. As equações propostas mostraram resultados precisos à medida que foram avaliadas com os dados de ensaios metabólicos. Em síntese, contribuiu-se tanto em termos metodológicos quanto em termos práticos e produção de produtos tecnológicos inovadores na experimentação agropecuária, mais especificamente na Nutrição de aves.
metadata.teses.dc.description.abstract: Balanced diets for poultry nutrition depend on the knowledge of the chemical composition of the feedstuffs, especially the values of apparent metabolizable energy corrected by the nitrogen balance (EMAn). The values of EMAn can be obtained in biological assays, in which the execution is time-consuming and expensive, as well as by feedstuff composition tables. Another way of obtaining the values of EMAn are the prediction equations established according to the chemical composition of the feedstuffs, usually of easy and fast obtaining. In the literature there are studies that obtained the prediction equations through multiple regression, meta-analysis and neural networks. In order to find more accurate results, the Bayesian networks are used to predict EMAn according to the chemical composition of the feedstuffs. Bayesian networks are graphical models (graphical models), which consist of graphical (graph) and probabilistic representation (conditional and joint probability distributions) of the variables. Bayesian networks were proposed by Judea Pearl, then known for defending probabilistic knowledge in the field of artificial intelligence. For a broad understanding of this area of research, Thompson Reuters’ Web of Science database was used to identify the patterns and trends of scientific publications on Bayesian networks, thus making it possible to check that most publications are related to the area of Computer Science. In the applied areas, mainly agriculture and livestock, there are still very few publications, however, Bayesian networks is an unprecedented research line in poultry nutrition and can be studied by researchers who are interested in predicting the values of metabolizable energy. Equations have been proposed through of the Bayesian networks, their being obtained by the Max-Min Hill Climbing algorithm (MMHC) and they can be used by the broiler industry in the making of diets, since they presented accuracy in the prediction of EMAn. Moreover, they were validated with data from metabolic assays and showed both precision and accuracy in the prediction of energy values. These equations are available in a calculator that can be installed on phones, tablets and computers. In this thesis a new methodological approach was also proposed in which it considered uncertainties in obtaining equations from the results of hybrid Bayesian networks. The estimates from means and mode of the coefficients of the chemical composition of feedstuffs derived from empirical distributions constructed with 10000 hybrid Bayesian networks performed better. The proposed equations showed accurate results as they were evaluated with metabolic assay data. In short, it has contributed both in methodological terms and in practical terms and the production of innovative technological products in agricultural experimentation, more specifically in poultry nutrition.
metadata.teses.dc.description: Arquivo retido, a pedido da autora, até março 2020.
metadata.teses.dc.identifier.uri: http://repositorio.ufla.br/jspui/handle/1/33256
metadata.teses.dc.publisher: Universidade Federal de Lavras
metadata.teses.dc.language: por
Appears in Collections:DEX - Estatística e Experimentação Agropecuária - Doutorado (Teses)

Files in This Item:
There are no files associated with this item.


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.