Use este identificador para citar ou linkar para este item: http://repositorio.ufla.br/jspui/handle/1/39702
Registro completo de metadados
Campo DCValorIdioma
dc.creatorRojas, Onofre-
dc.creatorSouza, S. M. de-
dc.date.accessioned2020-04-03T10:38:03Z-
dc.date.available2020-04-03T10:38:03Z-
dc.date.issued2009-03-
dc.identifier.citationROJAS, O.; SOUZA, S. M. de. A set of exactly solvable Ising models with half-odd-integer spin. Physics Letters A, [S.l.], v. 373, n. 15, p. 1321-1324, Mar. 2009. DOI: 10.1016/j.physleta.2009.02.020.pt_BR
dc.identifier.urihttps://www.sciencedirect.com/science/article/abs/pii/S037596010900187Xpt_BR
dc.identifier.urihttp://repositorio.ufla.br/jspui/handle/1/39702-
dc.description.abstractWe present a set of exactly solvable Ising models, with half-odd-integer spin-S on a square-type lattice including a quartic interaction term in the Hamiltonian. The particular properties of the mixed lattice, associated with mixed half-odd-integer spin-(S,1/2) and only nearest-neighbor interaction, allow us to map this system either onto a purely spin-1/2 lattice or onto a purely spin-S lattice. By imposing the condition that the mixed half-odd-integer spin-(S,1/2) lattice must have an exact solution, we found a set of exact solutions that satisfy the free fermion condition of the eight vertex model. The number of solutions for a general half-odd-integer spin-S is given by S+1/2. Therefore we conclude that this transformation is equivalent to a simple spin transformation which is independent of the coordination number.pt_BR
dc.languageen_USpt_BR
dc.publisherElsevierpt_BR
dc.rightsrestrictAccesspt_BR
dc.sourcePhysics Letters Apt_BR
dc.subjectMathematical physicspt_BR
dc.subjectTwo-dimensionalpt_BR
dc.subjectIsing modelpt_BR
dc.subjectExact resultspt_BR
dc.titleA set of exactly solvable Ising models with half-odd-integer spinpt_BR
dc.typeArtigopt_BR
Aparece nas coleções:DBI - Artigos publicados em periódicos

Arquivos associados a este item:
Não existem arquivos associados a este item.


Os itens no repositório estão protegidos por copyright, com todos os direitos reservados, salvo quando é indicado o contrário.