Use este identificador para citar ou linkar para este item:
http://repositorio.ufla.br/jspui/handle/1/40689
Registro completo de metadados
Campo DC | Valor | Idioma |
---|---|---|
dc.creator | Furlong, Vitor B. | - |
dc.creator | Corrêa, Luciano J. | - |
dc.creator | Giordano, Roberto C. | - |
dc.creator | Ribeiro, Marcelo P. A. | - |
dc.date.accessioned | 2020-05-07T18:35:14Z | - |
dc.date.available | 2020-05-07T18:35:14Z | - |
dc.date.issued | 2019-06 | - |
dc.identifier.citation | FURLONG, V. B. et al. Fuzzy-enhanced modeling of lignocellulosic biomass enzymatic saccharification. Energies, Basel, v. 12, n. 11, Jun. 2019. doi:10.3390/en12112110. | pt_BR |
dc.identifier.uri | http://repositorio.ufla.br/jspui/handle/1/40689 | - |
dc.description.abstract | The enzymatic hydrolysis of lignocellulosic biomass incorporates many physico-chemical phenomena, in a heterogeneous and complex media. In order to make the modeling task feasible, many simplifications must be assumed. Hence, different simplified models, such as Michaelis-Menten and Langmuir-based ones, have been used to describe batch processes. However, these simple models have difficulties in predicting fed-batch operations with different feeding policies. To overcome this problem and avoid an increase in the complexity of the model by incorporating other phenomenological terms, a Takagi-Sugeno Fuzzy approach has been proposed, which manages a consortium of different simple models for this process. Pretreated sugar cane bagasse was used as biomass in this case study. The fuzzy rule combines two Michaelis-Menten-based models, each responsible for describing the reaction path for a distinct range of solids concentrations in the reactor. The fuzzy model improved fitting and increased prediction in a validation data set. | pt_BR |
dc.language | en | pt_BR |
dc.publisher | MDPI Journals | pt_BR |
dc.rights | acesso aberto | pt_BR |
dc.rights.uri | http://creativecommons.org/licenses/by/4.0/ | * |
dc.source | Energies | pt_BR |
dc.subject | Fed-batch | pt_BR |
dc.subject | Fuzzy modeling | pt_BR |
dc.subject | High solids | pt_BR |
dc.subject | Lignocellulosic biomass hydrolysis | pt_BR |
dc.subject | Modelagem fuzzy | pt_BR |
dc.subject | Biomassa lignocelulósica | pt_BR |
dc.subject | Hidrólise enzimática | pt_BR |
dc.title | Fuzzy-enhanced modeling of lignocellulosic biomass enzymatic saccharification | pt_BR |
dc.type | Artigo | pt_BR |
Aparece nas coleções: | DEG - Artigos publicados em periódicos |
Arquivos associados a este item:
Arquivo | Descrição | Tamanho | Formato | |
---|---|---|---|---|
ARTIGO_Fuzzy-Enhanced Modeling of Lignocellulosic Biomass Enzymatic Saccharification.pdf | 2,54 MB | Adobe PDF | Visualizar/Abrir |
Este item está licenciada sob uma Licença Creative Commons