Use este identificador para citar ou linkar para este item:
http://repositorio.ufla.br/jspui/handle/1/41421
Título: | Feature selection and linear/non-linear regression methods for the accurate prediction of glycogen synthase kinase-3β inhibitory activities |
Palavras-chave: | Bioinformatics Computational biology Algorithms Layers Structure activity relationship Phenyls |
Data do documento: | Abr-2009 |
Editor: | American Chemical Society (ACS) |
Citação: | GOODARZI, M.; FREITAS, M. P.; JENSEN, R. Feature selection and linear/non-linear regression methods for the accurate prediction of glycogen synthase kinase-3β inhibitory activities. Journal of Chemical Information and Modeling, [S.l.], v. 49, n. 4, p. 824-832, Apr. 2009. DOI: 10.1021/ci9000103. |
Resumo: | Few variables were selected from a pool of calculated Dragon descriptors through three different feature selection methods, namely genetic algorithm (GA), successive projections algorithm (SPA), and fuzzy rough set ant colony optimization (fuzzy rough set ACO). Each set of selected descriptors was regressed against the bioactivities of a series of glycogen synthase kinase-3β (GSK-3β) inhibitors, through linear and nonlinear regression methods, namely multiple linear regression (MLR), artificial neural network (ANN), and support vector machines (SVM). The fuzzy rough set ACO/SVM-based model gave the best estimation/prediction results, demonstrating the nonlinear nature of this analysis and suggesting fuzzy rough set ACO, first introduced in chemistry here, as an improved variable selection method in QSAR for the class of GSK-3β inhibitors. |
URI: | https://pubs.acs.org/doi/10.1021/ci9000103 http://repositorio.ufla.br/jspui/handle/1/41421 |
Aparece nas coleções: | DQI - Artigos publicados em periódicos |
Arquivos associados a este item:
Não existem arquivos associados a este item.
Os itens no repositório estão protegidos por copyright, com todos os direitos reservados, salvo quando é indicado o contrário.