Use este identificador para citar ou linkar para este item: http://repositorio.ufla.br/jspui/handle/1/41805
Registro completo de metadados
Campo DCValorIdioma
dc.creatorGoodarzi, Mohammad-
dc.creatorFreitas, Matheus P.-
dc.creatorWu, Chih H.-
dc.creatorDuchowicz, Pablo R.-
dc.date.accessioned2020-07-12T22:34:30Z-
dc.date.available2020-07-12T22:34:30Z-
dc.date.issued2010-04-
dc.identifier.citationGOODARZI, M. et al. pKa modeling and prediction of a series of pH indicators through genetic algorithm-least square support vector regression. Chemometrics and Intelligent Laboratory Systems, [S.l.], v. 101, n. 2, p. 102-109, Apr. 2010. DOI: 10.1016/j.chemolab.2010.02.003.pt_BR
dc.identifier.urihttps://www.sciencedirect.com/science/article/abs/pii/S0169743910000274pt_BR
dc.identifier.urihttp://repositorio.ufla.br/jspui/handle/1/41805-
dc.description.abstractThe pKa values of a series of 107 indicators have been modeled by means of a quantitative structure–property relationship (QSPR) approach based on physicochemical descriptors and different variable selection and regression methods. A genetic algorithm/least square support vector regression (GA-LSSVR) model gave the most accurate estimations/predictions, with squared correlation coefficients of 0.90 and 0.89 for the training and test set compounds, respectively. The prediction ability of this model was found to be superior to that based on support vector machine regression alone, revealing the important effect of selecting suitable descriptors during a QSPR modeling. Moreover, the GA-LSSVR model showed higher predictive capability than linear methods, demonstrating the influence of nonlinearity on the modeling of pKa values, an extremely useful parameter in the analytical sciences.pt_BR
dc.languageen_USpt_BR
dc.publisherElsevierpt_BR
dc.rightsrestrictAccesspt_BR
dc.sourceChemometrics and Intelligent Laboratory Systemspt_BR
dc.subjectpKapt_BR
dc.subjectpH indicatorspt_BR
dc.subjectQuantitative structure-property relationshippt_BR
dc.subjectSupport vector machinespt_BR
dc.subjectGA-LSSVRpt_BR
dc.subjectGenetic algorithm-least square support vector regression (GA-LSSVR)pt_BR
dc.titlepKa modeling and prediction of a series of pH indicators through genetic algorithm-least square support vector regressionpt_BR
dc.typeArtigopt_BR
Aparece nas coleções:DQI - Artigos publicados em periódicos

Arquivos associados a este item:
Não existem arquivos associados a este item.


Os itens no repositório estão protegidos por copyright, com todos os direitos reservados, salvo quando é indicado o contrário.