Please use this identifier to cite or link to this item:
http://repositorio.ufla.br/jspui/handle/1/48409
Full metadata record
DC Field | Value | Language |
---|---|---|
dc.creator | Mariano, Flávia Cristina Martins Queiroz | - |
dc.creator | Lima, Renato Ribeiro de | - |
dc.creator | Alvarenga, Renata Ribeiro | - |
dc.creator | Rodrigues, Paulo Borges | - |
dc.date.accessioned | 2021-10-26T17:59:21Z | - |
dc.date.available | 2021-10-26T17:59:21Z | - |
dc.date.issued | 2020 | - |
dc.identifier.citation | MARIANO, F. C. M. Q. et al. Committee neural network and weighted multiple regression to predict the energetic values of poultry feedstuffs. Pesquisa Agropecuária Brasileira, Brasília, v. 55, e001199, 2020. DOI: 10.1590/S1678-3921.pab2020.v55.001199. | pt_BR |
dc.identifier.uri | http://repositorio.ufla.br/jspui/handle/1/48409 | - |
dc.description.abstract | The objective of this work was to compare the committee neural network (CNN) and weighted multiple linear regression (WMLR) models, in order to estimate the nitrogen-corrected apparent metabolizable energy (AMEn) of poultry feedstuffs. The prediction equation was adjusted by using a WMLR model and the meta-analysis principle. The models were compared by considering the correct prediction percentages, based on the classic prediction intervals and on the highest-probability density intervals, and by using a comparison test for proportions. The accuracy of the models was evaluated based on the values of the mean squared error, coefficient of determination, mean absolute deviation, mean absolute percentage error, and bias. Data from metabolic trials were used to compare the selected models. The committee neural network is the model that showed the highest accuracy of prediction, being recommended as the most accurate model to predict AMEn values for energetic concentrate feedstuffs used by the poultry feed industry. | pt_BR |
dc.language | en_US | pt_BR |
dc.publisher | Embrapa Secretaria de Pesquisa e Desenvolvimento, Pesquisa Agropecuária Brasileira | pt_BR |
dc.rights | Attribution 4.0 International | * |
dc.rights | acesso aberto | pt_BR |
dc.rights.uri | http://creativecommons.org/licenses/by/4.0/ | * |
dc.source | Pesquisa Agropecuária Brasileira | pt_BR |
dc.subject | Committee neural network | pt_BR |
dc.subject | Weighted multiple linear regression | pt_BR |
dc.subject | Broilers - Feedstuffs | pt_BR |
dc.subject | Highest-probability density interval | pt_BR |
dc.subject | Meta-analysis | pt_BR |
dc.subject | Metabolizable energy | pt_BR |
dc.subject | Regressão linear múltipla ponderada | pt_BR |
dc.subject | Frangos de corte - Dieta | pt_BR |
dc.subject | Intervalo de credibilidade da máxima probabilidade | pt_BR |
dc.subject | Meta-análise | pt_BR |
dc.subject | Energia metabolizável | pt_BR |
dc.title | Committee neural network and weighted multiple regression to predict the energetic values of poultry feedstuffs | pt_BR |
dc.title.alternative | Comitê de redes neurais e regressão múltipla ponderada para a predição de valores energéticos de alimentos para aves de corte | pt_BR |
dc.type | Artigo | pt_BR |
dc.description.resumo | O objetivo deste trabalho foi comparar o modelo comitê de redes neurais e o modelo de regressão linear múltipla ponderada (RLMP), para estimar a energia metabolizável aparente corrigida por nitrogênio (EMAn) de alimentos para aves. A equação de predição foi ajustada por RLMP e pelo princípio da meta-análise. Os modelos foram comparados tendo-se considerando as percentagens de acerto de predição, com base em intervalos de predição clássicos e intervalos de credibilidade da máxima densidade de probabilidade, e utilizado um teste para comparação de proporções. A acurácia dos modelos foi avaliada com base nos valores de erro médio quadrático, coeficiente de determinação, desvio médio absoluto, erro percentual absoluto médio e viés. Dados provenientes de ensaios metabólicos foram utilizados na comparação dos modelos selecionados. O comitê de redes neurais é o modelo que forneceu predições mais acuradas, sendo recomendado como o de maior acurácia, para prever os valores de EMAn de alimentos concentrados utilizados na indústria alimentícia para aves. | pt_BR |
Appears in Collections: | DES - Artigos publicados em periódicos |
Files in This Item:
File | Description | Size | Format | |
---|---|---|---|---|
ARTIGO_Committee neural network and weighted multiple regression to predict the energetic values of poultry feedstuffs.pdf | 312,39 kB | Adobe PDF | View/Open |
This item is licensed under a Creative Commons License