Please use this identifier to cite or link to this item: http://repositorio.ufla.br/jspui/handle/1/48811
Full metadata record
DC FieldValueLanguage
dc.creatorLino, Jéssica Boreli dos Reis-
dc.date.accessioned2022-01-12T15:45:19Z-
dc.date.available2022-01-12T15:45:19Z-
dc.date.issued2021-01-12-
dc.date.submitted2021-12-16-
dc.identifier.citationLINO, J. B. dos R. Enhancing NMR quantum computation by optimizing spectroscopic parameters of potential qubit molecules. 2021. 103 p. Tese (Doutorado em Agroquímica)-Universidade Federal de Lavras, Lavras, 2021.pt_BR
dc.identifier.urihttp://repositorio.ufla.br/jspui/handle/1/48811-
dc.description.abstractQuantum computing is the field of science that uses quantum-mechanical phenomena, such as superposition and entanglement, to perform operations on data. The fundamental information unit used in quantum computing is the quantum bit or qubit. It is well known that quantum computers could theoretically be able to solve problems much more quickly than any classical computers. Currently, liquid state nuclear resonance magnetic (NMR) enriches quantum information processing (QIP) by inspiring new ideas for theoretical and experimental investigation, leading to technology for demonstrating quantum computing in small physical systems. Notwithstanding, molecules that enable many qubits NMR QIP implementations should meet some conditions regarding their spectroscopic properties. First, exceptionally large through-space (TS) P-P SSCCs observed in 1,8-diphosphanaphthalenes (PPN) and in naphtho[1,8-cd]-1,2-dithiole phenylphosphines (NTP) were proposed and investigated to provide more accurate control within large-scale NMR QIP. Spectroscopic properties of PPN and NTP derivatives, as chemical shifts and through-space spin-spin couplings were explored by theoretical strategies. From our results, the derivatives PPNo-F, PPNo-ethyl and PPNo-NH2 were the best candidates for quantum information processing via NMR, where the large TS J could circumvent the need of long-time quantum gate implementations. Which could, in principle, overcome natural limitations related to the development of large-scale NMR QIP. In the second paper, we report a computational design strategy for prescreening recently synthesized complexes of cadmium, mercury, tellurium, selenium, and phosphorus (called MRE complexes) as suitable qubit molecules for NMR QIP. Chemical shifts and spin−spin coupling constants in five MRE complexes were examined using the spin−orbit zeroth order regular approximation (ZORA) at the density functional theory level and the four-component relativistic Dirac-Kohn-Sham approach. Assembled together with the most common qubits used in NMR quantum computation experiments, spin-1/2 nuclei, such as 113Cd, 199Hg, 125Te, and 77Se, could leverage the prospective scalable quantum computer architectures, enabling many and heteronuclear qubits for NMR QIP implementations.pt_BR
dc.description.sponsorshipCoordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)pt_BR
dc.languageengpt_BR
dc.publisherUniversidade Federal de Lavraspt_BR
dc.rightsacesso abertopt_BR
dc.subjectCálculos de parâmetros de NMRpt_BR
dc.subjectComputação quânticapt_BR
dc.subjectInformação quânticapt_BR
dc.subjectNMR parameters calculationspt_BR
dc.subjectQuantum computationpt_BR
dc.subjectQuantum informationpt_BR
dc.titleEnhancing NMR quantum computation by optimizing spectroscopic parameters of potential qubit moleculespt_BR
dc.typetesept_BR
dc.publisher.programPrograma de Pós-Graduação em Agroquímicapt_BR
dc.publisher.initialsUFLApt_BR
dc.publisher.countrybrasilpt_BR
dc.contributor.advisor1Ramalho, Teodorico de Castro-
dc.contributor.referee1Moura, André Farias de-
dc.contributor.referee2Rojas Leyva, Moisés Porfírio-
dc.contributor.referee3Mello, Paula Homem de-
dc.contributor.referee4Thomasi, Sérgio Scherrer-
dc.description.resumoA computação quântica é o campo da ciência que usa fenômenos da mecânica quântica, como superposição e emaranhamento, para realizar operações em dados. A unidade de informação básica usada na computação quântica é o bit quântico ou qubit. Sabe-se que os computadores quânticos poderiam teoricamente ser capazes de resolver problemas muito mais rapidamente do que qualquer computador clássico. Atualmente, a ressonância magnética nuclear (RMN) no estado líquido enriquece o processamento da informação quântica (PIQ), inspirando novas ideias para sua investigação teórica e experimental, desenvolvendo tecnologias para demonstrar a computação quântica em pequenos sistemas físicos. Não obstante, as moléculas que permitem implementações de muitos quantum bits (qubits) no PIQ via RMN devem atender a algumas condições em relação às suas propriedades espectroscópicas. Em primeiro momento, constantes de acoplamento através do espaço (TS) de 31P-31P excepcionalmente grandes observados em 1,8-difosfanaftalenos (PPN) e em nafto[1,8-cd]-1,2-ditiole fenilfosfinas (NTP) foram propostas e investigadas com intuito de fornecer um controle mais preciso no PIQ por RMN em grande escala. Propriedades espectroscópicas de derivados de PPN e NTP, como deslocamento químicos e acoplamentos spin-spin através do espaço foram exploradas por estratégias teóricas. A partir de nossos resultados, os derivados PPNo-F, PPNo-etil e PPNo-NH2 foram os melhores candidatos para processamento de informação quântica via RMN, na qual a elevada constante de acoplamento TS poderia contornar a necessidade de longos tempos nas implementações de portas quânticas. O que poderia, em princípio, superar as limitações naturais relacionadas ao desenvolvimento do PIQ via RMN em larga escala. No segundo artigo, relatamos uma estratégia de design computacional para pré-seleção de complexos recentemente sintetizados de cádmio, mercúrio, telúrio, selênio e fósforo (chamados complexos MRE) como moléculas qubit adequadas para o PIQ via RMN. Deslocamentos químicos e constantes de acoplamento spin−spin em cinco complexos MRE foram examinados usando a aproximação regular de ordem zero (ZORA) a nível DFT (Teoria do funcional de densidade) e a abordagem relativística de quatro componentes de Dirac−Kohn−Sham. Usados juntos com os qubits mais comumente utilizados em experimentos de computação quântica via RMN, núcleos de spin-1/2, como 113Cd, 199Hg, 125Te e 77Se, podem alavancar as futuras arquiteturas de computadores quânticos escaláveis, permitindo muitos qubits heteronucleares para implementações do PIQ via RMN.pt_BR
dc.publisher.departmentDepartamento de Químicapt_BR
dc.subject.cnpqQuímicapt_BR
dc.creator.Latteshttp://lattes.cnpq.br/7177117411020487pt_BR
Appears in Collections:Agroquímica - Doutorado (Teses)



Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.