Use este identificador para citar ou linkar para este item: http://repositorio.ufla.br/jspui/handle/1/50009
Registro completo de metadados
Campo DCValorIdioma
dc.creatorDantas, Daniel-
dc.creatorTerra, Marcela de Castro Nunes Santos-
dc.creatorSchorr, Luis Paulo Baldissera-
dc.creatorCalegario, Natalino-
dc.date.accessioned2022-05-25T18:25:24Z-
dc.date.available2022-05-25T18:25:24Z-
dc.date.issued2021-
dc.identifier.citationDANTAS, D. et al. Machine learning for carbon stock prediction in a tropical forest in Southeastern Brazil. Bosque, Valdivia, v. 42, n. 1, p. 131-140, 2021. DOI: 10.4067/S0717-92002021000100131.pt_BR
dc.identifier.urihttp://repositorio.ufla.br/jspui/handle/1/50009-
dc.description.abstractThe increasing awareness of global climate change has drawn attention to the role of forests as mitigators of this process as they act as carbon sinks to the atmosphere. Understanding the process of carbon storage in forests and its drivers, as well as presenting consistent models for their estimation, is a current demand. In this sense, the aim of this study was to evaluate the performance of machine learning techniques: support vector machines (SVM) and to propose a new nonlinear model extracted from the training of an artificial neural network (ANN) in the modeling of above ground carbon stock in a secondary semideciduous forest. SVM and ANN construction and training process considered independent variables selected by stepwise: minimum DBH (diameter of breast height - 1.3 m), maximum DBH, mean DBH, total height and number of trees, all by plot. SVM and the model extracted from ANN were applied to the data set intended for validation. Both techniques presented satisfactory performance in modeling carbon stock by plot, with homogeneous distribution and low dispersion of residues and predicted values close to those observed. Analysis criteria indicated superior performance of the model extracted from the artificial neural network, which presented a mean relative error of 6.94 %, while the support vector machine presented 13.52 %, combined with lower bias values and higher correlation between predictions and observations.pt_BR
dc.languageen_USpt_BR
dc.publisherUniversidad Austral de Chile, Facultad de Ciencias Forestalespt_BR
dc.rightsAttribution-NonCommercial 4.0 International*
dc.rightsacesso abertopt_BR
dc.rights.urihttp://creativecommons.org/licenses/by-nc/4.0/*
dc.sourceBosquept_BR
dc.subjectArtificial intelligencept_BR
dc.subjectArtificial neural networkspt_BR
dc.subjectSupport vector machinespt_BR
dc.subjectForest biomasspt_BR
dc.subjectCarbon stock predictionpt_BR
dc.subjectInteligência artificialpt_BR
dc.subjectRedes neurais artificiaispt_BR
dc.subjectMáquinas vetoriais de suportept_BR
dc.subjectBiomassa florestalpt_BR
dc.subjectPredição do estoque de carbonopt_BR
dc.titleMachine learning for carbon stock prediction in a tropical forest in Southeastern Brazilpt_BR
dc.title.alternativeAprendizaje de máquina para la predicción de reservas de carbono en un bosque tropical en el sureste de Brasilpt_BR
dc.typeArtigopt_BR
Aparece nas coleções:DCF - Artigos publicados em periódicos

Arquivos associados a este item:
Arquivo Descrição TamanhoFormato 
ARTIGO_Machine learning for carbon stock prediction in a tropical forest in Southeastern Brazil.pdf607,66 kBAdobe PDFVisualizar/Abrir


Este item está licenciada sob uma Licença Creative Commons Creative Commons