Use este identificador para citar ou linkar para este item: http://repositorio.ufla.br/jspui/handle/1/50665
Registro completo de metadados
Campo DCValorIdioma
dc.creatorRamires, Thiago G.-
dc.creatorNakamura, Luiz R.-
dc.creatorRighetto, Ana J.-
dc.creatorKonrath, Andréa C.-
dc.creatorPereira, Carlos A. B.-
dc.date.accessioned2022-07-20T21:04:13Z-
dc.date.available2022-07-20T21:04:13Z-
dc.date.issued2021-
dc.identifier.citationRAMIRES, T. G. et al. Incorporating clustering techniques into GAMLSS. Stats, [S. l.], v. 4, n. 4, p. 916-930, 2021. DOI: 10.3390/stats4040053.pt_BR
dc.identifier.urihttp://repositorio.ufla.br/jspui/handle/1/50665-
dc.description.abstractA method for statistical analysis of multimodal and/or highly distorted data is presented. The new methodology combines different clustering methods with the GAMLSS (generalized additive models for location, scale, and shape) framework, and is therefore called c-GAMLSS, for “clustering GAMLSS. ” In this new extended structure, a latent variable (cluster) is created to explain the response-variable (target). Any and all parameters of the distribution for the response variable can also be modeled by functions of the new covariate added to other available resources (features). The method of selecting resources to be used is carried out in stages, a step-based method. A simulation study considering multiple scenarios is presented to compare the c-GAMLSS method with existing Gaussian mixture models. We show by means of four different data applications that in cases where other authentic explanatory variables are or are not available, the c-GAMLSS structure outperforms mixture models, some recently developed complex distributions, cluster-weighted models, and a mixture-of-experts model. Even though we use simple distributions in our examples, other more sophisticated distributions can be used to explain the response variable.pt_BR
dc.languageen_USpt_BR
dc.publisherMDPIpt_BR
dc.rightsAttribution 4.0 International*
dc.rightsacesso abertopt_BR
dc.rights.urihttp://creativecommons.org/licenses/by/4.0/*
dc.sourceStatspt_BR
dc.subjectBimodal distributionspt_BR
dc.subjectMixture modelspt_BR
dc.subjectRegression modelspt_BR
dc.subjectStatistical learningpt_BR
dc.subjectDistribuições bimodaispt_BR
dc.subjectModelos mistospt_BR
dc.subjectModelos de regressãopt_BR
dc.subjectAprendizado estatísticopt_BR
dc.titleIncorporating clustering techniques into GAMLSSpt_BR
dc.typeArtigopt_BR
Aparece nas coleções:DES - Artigos publicados em periódicos

Arquivos associados a este item:
Arquivo Descrição TamanhoFormato 
ARTIGO_Incorporating clustering techniques into GAMLSS.pdf913,17 kBAdobe PDFVisualizar/Abrir


Este item está licenciada sob uma Licença Creative Commons Creative Commons