Use este identificador para citar ou linkar para este item:
http://repositorio.ufla.br/jspui/handle/1/50771
Registro completo de metadados
Campo DC | Valor | Idioma |
---|---|---|
dc.creator | Oliveira, Luciano Antonio de | - |
dc.creator | Silva, Carlos Pereira da | - |
dc.creator | Silva, Alessandra Querino da | - |
dc.creator | Mendes, Cristian Tiago Erazo | - |
dc.creator | Nuvunga, Joel Jorge | - |
dc.creator | Nunes, José Airton Rodrigues | - |
dc.creator | Parrella, Rafael Augusto da Costa | - |
dc.creator | Baleste, Marcio | - |
dc.creator | Bueno Filho, Júlio Sílvio de Sousa | - |
dc.date.accessioned | 2022-07-29T20:33:46Z | - |
dc.date.available | 2022-07-29T20:33:46Z | - |
dc.date.issued | 2022-05 | - |
dc.identifier.citation | OLIVEIRA, L. A. de et al. Bayesian GGE model for heteroscedastic multienvironmental trials. Crop Science, Madison, v. 62, n. 3, p. 982-996, May/June 2022. DOI: 10.1002/csc2.20696. | pt_BR |
dc.identifier.uri | https://doi.org/10.1002/csc2.20696 | pt_BR |
dc.identifier.uri | http://repositorio.ufla.br/jspui/handle/1/50771 | - |
dc.description.abstract | The dissection of genotype × environment interaction (GEI) is a crucial aspect of the final stages of plant breeding pipelines and recommendation of cultivars. Linear-bilinear models used to analyze this interaction, such as the additive main effects and multiplicative interaction (AMMI) and genotype plus GEI (GGE), often assume homogeneity of the residual variances across environments which affects the estimates and therefore, interpretations and conclusions. Our main objective was to propose a GGE model that considers heteroscedasticity across environments using Bayesian inference and to evaluate its implications in the interpretation of real and simulated data. The GGE model assuming common variance was also fitted for comparison purposes. The great flexibility of the Bayesian inference is transferred to the biplots, allowing the construction of credible regions for genotypic and environmental scores. The inference on the stability and adaptability of genotypes might change when heteroscedasticity is ignored. When real data are used, different patterns of correlations between environments also affect the representativeness and discrimination of the target environment. The modeling of heteroscedasticity allowed the clustering of environments into subgroups, with similar effects for GEI. The proposed GGE model was more adequate and realistic to deal with scenarios of heterogeneous variance in multienvironment trials, which can be useful for exploiting the GEI. | pt_BR |
dc.language | en_US | pt_BR |
dc.publisher | John Wiley & Sons | pt_BR |
dc.rights | restrictAccess | pt_BR |
dc.source | Crop Science | pt_BR |
dc.subject | Bayesian inference | pt_BR |
dc.subject | Plant breeding | pt_BR |
dc.subject | GGE model | pt_BR |
dc.subject | Inferência Bayesiana | pt_BR |
dc.subject | Melhoramento vegetal | pt_BR |
dc.title | Bayesian GGE model for heteroscedastic multienvironmental trials | pt_BR |
dc.type | Artigo | pt_BR |
Aparece nas coleções: | DBI - Artigos publicados em periódicos |
Arquivos associados a este item:
Não existem arquivos associados a este item.
Os itens no repositório estão protegidos por copyright, com todos os direitos reservados, salvo quando é indicado o contrário.