Use este identificador para citar ou linkar para este item: http://repositorio.ufla.br/jspui/handle/1/5685
Registro completo de metadados
Campo DCValorIdioma
dc.creatorRamos,Jean Paulo Silva-
dc.date2003-04-01-
dc.date.accessioned2015-04-30T13:32:38Z-
dc.date.available2015-04-30T13:32:38Z-
dc.date.issued2015-04-30-
dc.identifierhttp://www.scielo.br/scielo.php?script=sci_arttext&pid=S1413-70542003000200015-
dc.identifier.urihttp://repositorio.ufla.br/jspui/handle/1/5685-
dc.descriptionInúmeras são as atividades agrícolas que necessitam de interação humana nos processos decisórios, e entre elas encontra-se a classificação de frutos. O consumo de frutos "in natura" exige altíssimo nível de qualidade, demandando um processo classificatório mais acurado. A classificação de frutos depende do reconhecimento de padrões natural ou artificial, de acordo com algumas categorias pré-definidas. Uma vez que um padrão de um fruto está sendo classificado, esse deve ser comparado com algum outro padrão armazenado. A maior parte da classificação de frutos é baseada na classificação humana.Este trabalho apresenta a possibilidade de uso de redes neurais artificiais no desenvolvimento de modelos de classificação de frutos por meio de vetores de padrões. Este trabalho foi desenvolvido no Departamento de Máquinas Agrícolas da Faculdade de Engenharia Agrícola da Universidade Estadual de Campinas, as redes neurais armazenaram os vetores de padrões de frutos peso, diâmetro. Esses componentes vetoriais associados entre si interagiram, determinando um vetor padrão de saída de acordo com os padrões de frutos armazenados. Para atingir esses objetivos, foi usada uma rede Perceptron de múltiplas camadas, com algoritmo de treinamento tipo retro-propagação para armazenar os vetores de padrões de frutos e para classificação desses padrões de entrada. A rede treinada conseguiu aprender a relação entre vetores de entrada e saída, demonstrando a potencialidade do uso de tais ferramentas na classificação artificial.-
dc.formattext/html-
dc.languagept-
dc.publisherEditora da Universidade Federal de Lavras-
dc.sourceCiência e Agrotecnologia v.27 n.2 2003-
dc.subjectRedes Neurais Artificias-
dc.subjectclassificação-
dc.subjectRedes Múltiplas Camadas-
dc.titleRedes neurais artificiais na classificação de frutos: cenário bidimensional-
dc.typejournal article-
Aparece nas coleções:Ciência e Agrotecnologia

Arquivos associados a este item:
Não existem arquivos associados a este item.


Os itens no repositório estão protegidos por copyright, com todos os direitos reservados, salvo quando é indicado o contrário.