Use este identificador para citar ou linkar para este item:
http://repositorio.ufla.br/jspui/handle/1/874
Registro completo de metadados
Campo DC | Valor | Idioma |
---|---|---|
dc.creator | Oliveira, Thomaz C. de A. | - |
dc.creator | Carvalho, Luis Marcelo Tavares de | - |
dc.creator | Oliveira, Luciano T. de | - |
dc.creator | Martinhago, Adriana Z. | - |
dc.creator | Júnior, Fausto W. A. | - |
dc.creator | Lima, Mariana P. de | - |
dc.date.accessioned | 2013-08-07T13:51:59Z | - |
dc.date.available | 2013-08-07T13:51:59Z | - |
dc.date.issued | 2010 | - |
dc.identifier.citation | OLIVEIRA, T. C. de A. et al. Mapping deciduous forests by using time series of filtered MODIS NDVI and neural networks. Cerne, Lavras, MG, v. 16, n. 2, p. 123-130, abr./jun. 2010. | pt_BR |
dc.identifier.uri | http://repositorio.ufla.br/jspui/handle/1/874 | - |
dc.description.abstract | Multi-temporal images are now of standard use in remote sensing of vegetation during monitoring and classification. Temporal vegetation signatures (i. e., vegetation indices as functions of time) generated, poses many challenges, primarily due to signal to noise-related issues. This study investigates which methods generate the most appropriate smoothed curves of vegetation signatures on MODIS NDVI time series. The filtering techniques compared were the HANTS algorithm which is based on Fourier analyses and Wavelet temporal algorithm which uses the wavelet analysis to generate the smoothed curves. The study was conducted in four different regions of the Minas Gerais State. The smoothed data were used as input data vectors for vegetation classification by means of artificial neural networks for comparison purpose. A comparison of the results was ultimately discussed in this work showing encouraging results and similarity between the two filtering techniques used. | pt_BR |
dc.language | en | pt_BR |
dc.publisher | Universidade Federal de Lavras | pt_BR |
dc.rights | acesso aberto | pt_BR |
dc.source | Cerne | pt_BR |
dc.subject | Remote sensing | pt_BR |
dc.subject | Signal processing | pt_BR |
dc.subject | Time series | pt_BR |
dc.subject | Wavelets analysis | pt_BR |
dc.subject | Fourier | pt_BR |
dc.subject | Sensoriamento remoto | pt_BR |
dc.subject | Processamento de sinais | pt_BR |
dc.subject | Análise wavelets | pt_BR |
dc.title | Mapping deciduous forests by using time series of filtered modis nfvi and neural networks | pt_BR |
dc.title.alternative | Mapeamento de florestas decíduas através de redes neurais artificiais e séries temporais de ndvi modis | pt_BR |
dc.type | Artigo | pt_BR |
dc.description.resumo | Imagens multitemporais são de pronominal uso no Sensoriamento Remoto, para o monitoramento e classificação da vegetação. As decorrentes assinaturas temporais da vegetação possuem muitos desafios na sua utilização em razão da elevada relação sinal/ruído. Este estudo investigou dois métodos para gerar assinaturas temporais suavizadas de vegetação do índice de vegetação de diferença normalizada (NDVI), sendo estas originadas do sensor MODIS. As técnicas de filtragem utilizadas foram o algoritmo baseado em Fourier HANTS e algoritmo Wavelet Temporal que utiliza análise Wavelet. O estudo foi conduzido em 4 diferentes conjuntos de dados, correspondente a áreas separadas geograficamente no estado de Minas Gerais. Para realizar a comparação entre as séries temporais filtradas pelos diferentes algoritmos, as séries filtradas foram utilizadas como entradas de dados para classificação da vegetação em diferentes fitofisionomias. A Classificação foi feita por meio das redes neurais artificiais. O resultado dessa classificação mostrou similaridade entre os métodos de filtragem de séries temporais NDVI comparados neste trabalho. | pt_BR |
Aparece nas coleções: | DCF - Artigos publicados em periódicos |
Arquivos associados a este item:
Arquivo | Descrição | Tamanho | Formato | |
---|---|---|---|---|
ARTIGO_Mapping deciduous forests by using time series of filtered MODIS NDVI and neural networks | 2,63 MB | Adobe PDF | Visualizar/Abrir |
Os itens no repositório estão protegidos por copyright, com todos os direitos reservados, salvo quando é indicado o contrário.