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RESUMO GERAL 

Informações espaciais e quantitativas sobre atributos da floresta são 

fundamentais ao manejo florestal, sendo importantes indicadores de processos 

biofísicos, da dinâmica florestal e da provisão de serviços e bens. Neste cenário, 

esta tese tem como objetivo principal testar a eficácia da integração de dados de 

campo, imagens óticas multiespectrais obtidas dos satélites Landsat 5 TM, 

Landsat 8 OLI e Sentinel-2A, dados de radar de abertura sintética (SAR), 

adquiridos pelo satélite Sentinel-1B, atributos de terreno e dados climáticos, para 

estimar e mapear características dendrométricas de plantios de Eucalyptus, ao 

Norte do estado de Minas Gerais, Brasil, utilizando métodos paramétricos e não 

paramétricos de predição espacial. Para tanto, esta tese foi organizada em quatro 

artigos. No primeiro artigo (1), os métodos Regressão Linear Múltipla (RLM), 

Random Forest (RF), Support Vector Machine (SVM) e Redes Neurais 

Artificiais (RNA) foram avaliados, para estimar e mapear área basal e volume, 

usando dados espectrais das imagens Landsat 5 TM. Entre os métodos de 

predição avaliados, o RF apresentou o melhor desempenho, para predizer e 

mapear área basal e volume, e, por esse motivo, foi utilizado nos artigos 

seguintes para a predição e mapeamento de características dendrométricas. No 

segundo artigo (2), diferentes combinações de dados (idade do povoamento, 

dados óticos multiespectrais Landsat 8 OLI, dados de radar Sentinel-1B e 

atributos de terreno) foram testadas para a estimativa volumétrica em um plantio 

de Eucalyptus. Os resultados mostraram que uma maior acurácia é obtida a 

partir da combinação de todos os conjuntos de dados. O terceiro artigo (3) 

investigou se a melhor resolução espacial das imagens multiespectrais do 

Sentinel-2A melhorariam as estimativas de características dendrométricas, 

comparada com as imagens multiespectrais Landsat-8 OLI, quando ambas as 

imagens foram combinadas com dados de radar Sentinel-1B e atributos de 

terreno. Como esperado, a melhor resolução espacial das imagens Sentinel-2A 

resultou em maior acurácia na previsão de características dendrométricas de 

plantios de Eucalyptus. No quarto artigo (4), o RF foi utilizado, para a 

classificação da produtividade florestal e para predizer o incremento médio 

anual máximo (IMAmax) de plantios de Eucalyptus, com base em atributos de 

terreno e dados climáticos em escala regional. Os atributos de terreno e as 

variáveis bioclimáticas mostraram bom potencial para classificar a produtividade 

florestal e para predizer o IMAmax. A grande e crescente área de plantações de 

eucalipto no Brasil e no mundo sugere que as novas abordagens aqui propostas, 

para a estimativa de atributos do povoamento e da produtividade florestal, 

apresentam grande potencial de suporte para o monitoramento e manejo de 

florestas plantadas. 

Palavras-chave: Manejo florestal. Sensoriamento remoto. Random Forest. 

Atributos de terreno. 



 

GENERAL ABSTRACT 

Quantitative spatial information on forest attributes is critical in forest 

management as an important indicator of biophysical processes, forest dynamics 

and the provision of services and goods. In this thesis, the effectiveness of 

integrating field data, multispectral optical imagery obtained from Landsat 5 

Thematic Mapper (TM), Landsat 8 Operational Land Imager (OLI), and 

Sentinel-2A satellites, synthetic aperture radar (SAR) data acquired by the 

Sentinel-1B satellite, digital terrain attributes derived from a digital elevation 

model (DEM) and climate data was tested using parametric and nonparametric 

methods of spatial prediction for estimating and mapping forest stand attributes 

in Eucalyptus plantations in northern Minas Gerais state, Brazil. For this 

purpose, this thesis was organized in four articles. In the first one (1), Multiple 

Linear Regression (MLR), Random Forest (RF), Support Vector Machine 

(SVM), and Artificial Neural Networks (ANN) methods were assessed to 

estimate and map basal area and volume using Landsat 5 TM data. RF showed 

the best performance for spatial prediction and mapping of stand attributes in 

Eucalyptus stands, and for this reason, it was used in the next three articles. In 

the second article (2), different combinations of stand age with variables 

extracted from three different digital datasets (i.e., Landsat 8 OLI multispectral 

optical data, Sentinel-1B SAR data, and DEM-derived terrain attributes) were 

tested to estimate volume. The results showed that the best data combination 

corresponds to the integration of all datasets (i.e., stand age and the selected 

variables of Landsat 8 OLI and Sentinel-1B SAR imagery, and DEM-derived 

terrain attributes). The third article (3) investigated the potential of Sentinel-2A 

multispectral information for improving forest attribute estimates compared with 

Landsat-8 OLI imagery when both multispectral optical imagery (i.e., Sentinel-

2A and Landsat 8 OLI) were combined with Sentinel-1B SAR data and DEM-

derived terrain attributes. As expected, the Sentinel-2A optical data appeared to 

have a greater explanatory power in predicting forest attributes of Eucalyptus 

plantations compared to Landsat 8 OLI imagery. In the fourth article (4), a 

nonparametric modeling approach was used to examine relationships between 

terrain attributes and climate data on forest site productivity and maximum mean 

annual increment (MAImax) of Eucalyptus plantations at a regional scale. Terrain 

attributes and bioclimatic variables showed good potential to classify site 

productivity and to predict MAImax in our study area. The large and increasing 

area of Eucalyptus forest plantations in Brazil and elsewhere suggest that the 

new approaches developed here to estimate forest stand attributes and 

productivity have great potential to support Eucalyptus plantation monitoring 

and forest management practices.  

Keywords: Forest Management. Remote Sensing. Random Forest. Terrain 

Attributes.  
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FIRST PART 

1 INTRODUCTION 

The Brazilian forestry sector has intensely increased the productivity of 

Eucalyptus plantations through intensive silviculture, genetic selection, and 

breeding techniques (CAMPOE et al., 2013; GONÇALVES et al., 2013). The 

first commercial Eucalyptus plantations in Brazil were established in the early 

1900s and, along with recent large-scale afforestation and reforestation efforts, 

such plantations have now expanded rapidly to cover more than 5.7 million 

hectares. These plantations produce around 17% of the harvested wood in the 

world and are estimated to have the capacity to absorb approximately 1.2 billion 

tons of carbon dioxide annually (BRAZILIAN TREE INDUSTRY - IBÁ, 2017). 

Traditionally, monitoring of Eucalyptus forest growth in Brazilian forest 

plantations is conducted through annual field-based forest inventories 

(RAIMUNDO et al., 2017). However, in fast-growing forests like Eucalyptus 

plantations, field-based inventory surveys might not be sufficient to capture 

productivity differences across the entire area, such as those arising from losses 

due to pest and disease attacks (COOPS et al., 2006), or from climatic anomalies 

(GONZÁLEZ-GARCÍA et al., 2015; SCOLFORO et al., 2016). Furthermore, 

field-based forest inventory measurements are expensive, time consuming, and 

labour intensive. 

In the past decade, advances in remote sensing technologies have 

allowed increasing detailed data collection, from which spatially-explicit 

information can be extracted to supplement the field-based forest inventory data 

collection, and to predict forest stand attributes (BAGHDADI et al., 2014, 2015; 

BERRA et al., 2012; CANAVESI; PONZONI; VALERIANO, 2010; DUBE; 

MUTANGA, 2015, 2016; GAMA; SANTOS; MURA, 2010, 2016; 
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GEBRESLASIE; AHMED; VAN AARDT, 2010, 2011; MURA et al., 2018; 

PULITI et al., 2018). In parallel with the advances in remote sensing 

technologies, computational techniques, such as machine-learning algorithms 

(MLA), have been increasingly used to model spectral and biological data, and 

have proven to yield high prediction accuracy in analysis of complex variable 

datasets in forestry and multi-source remote sensing (DUBE et al., 2015; 

FRANKLIN; AHMED, 2017; GAO et al., 2016; NOVELLI et al., 2016; 

ZHANG et al., 2018). These techniques overcome the difficulties of classical 

statistical methods such as spatial correlation, non-linearity of data, and 

overfitting (WERE et al., 2015), and have been used in several studies due to 

their stability and efficiency in terms of handling a large number of predictor 

variables (CASTILLO et al., 2017; HAWRYŁO; WĘŻYK, 2018; LÓPEZ-

SERRANO et al., 2016; SHAO; ZHANG; WANG, 2017). 

In this context, the main objective of this thesis was to investigate the 

effectiveness of integrating field data, multispectral optical imagery obtained 

from Landsat 5 Thematic Mapper (TM), Landsat 8 Operational Land Imager 

(OLI), and Sentinel-2A satellites, synthetic aperture radar (SAR) data acquired 

by the Sentinel-1B satellite, digital terrain attributes derived from a digital 

elevation model (DEM) and climate data using parametric and nonparametric 

methods of spatial prediction for estimating and mapping forest stand attributes 

in Eucalyptus plantations in northern Minas Gerais state, Brazil. For this 

purpose, this thesis was organized in four articles. In the first one (1), the 

performance of three machine-learning algorithms (i.e., Random Forest, Support 

Vector Machine, and Artificial Neural Networks) were compared with the 

performance of multilinear regression model to estimate and map basal area and 

volume of a Eucalyptus plantation using Landsat 5 TM data. Furthermore, the 

first article investigated whether the addition of residual kriging in the spatial 

prediction methods leads to accuracy improvement in basal area and volume 
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estimates. In the second article (2), variables extracted from three different 

digital datasets (i.e., Landsat 8 OLI multispectral optical data, Sentinel-1B SAR 

data, and terrain attributes) were used separately to estimate Eucalyptus 

plantation volume. Nextly, stand age was combined with the best multispectral 

optical, SAR, and terrain attribute variables to predict volume using the Random 

Forest (RF) machine learning algorithm, and the final estimated forest volumes 

were compared to the field-observations of volume in the independent forest 

inventory sample. The various models were interpreted and the best overall 

model was compared with the results obtained when using each dataset alone. 

The third article (3) investigated whether the object-based approach improves 

the estimation accuracy of Eucalyptus stand attributes compared with the pixel-

based approach, and whether the better spatial resolution of Sentinel-2A optical 

images results in better predictions than when using Landsat 8 OLI data. In the 

fourth article (4), a nonparametric modeling approach was used to examine 

relationships between terrain attributes and climate data on forest site 

productivity and maximum mean annual increment (MAImax) of Eucalyptus 

plantations at regional scale. The main objective of the fourth article was to 

determine whether geomorphometrics derived from a DEM and/or bioclimatic 

variables could be used as predictors of productive potential of Eucalyptus 

plantations across a large area of heterogeneous terrain and climate conditions in 

Minas Gerais state, Brazil. 
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2 LITERATURE REVIEW 

This section reviews Eucalyptus plantation stand attribute estimation 

using multi-source remotely sensed data and ancillary data, such as DEM-

derived terrain attributes and climate data, in comparison to field observations. 

Typically, the general approach is to extract relevant multispectral and SAR 

satellite data variables, such as vegetation indices and texture derivatives, and 

DEM-derived terrain attributes, such as slope and aspect, and develop a 

regression or statistical model.  

In southern Brazil, Berra et al. (2012) estimated the volume of a 

Eucalyptus plantation using vegetation indices derived from Landsat 5 TM 

images with a coefficient of determination (R
2
) equal to 0.7. Employing eight 

Hyperion EO-1 (Earth Observing-1) (total bands = 220) derived vegetation 

indices and multiple-linear regression models to estimate Eucalyptus stand 

volume in Brazil, Canavesi, Ponzoni and Valeriano (2010) obtained a Root 

Mean Square Error (RMSE) equal to 43.7 m
3
 ha

−1
. Gama, dos Santos, and Mura 

(2010) used airborne interferometric and polarimetric SAR data in X and P 

bands to estimate the volume of Eucalyptus plantations and obtained RMSE = 

33.6 m
3 
ha

−1
.  

Ismail et al. (2015) used ALOS PALSAR backscatter and SPOT 4 

multispectral optical data to predict the volume in Eucalyptus plantations in 

Zululand, South Africa. Stand age – measured as an annual increment since 

planting date – was used as an independent variable in a regression model of 

volume, with one optical band (short-wave infrared or SWIR) and one SAR 

band (HV cross-polarization backscatter). The best model produced a RMSE of 

31.7 m
3 

ha
-1

, which was considered appropriate for operational forest 

management in this region. The combination of stand age and multi-source – 

optical and SAR – satellite remotely sensed data outperformed the use of the 
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different satellite datasets alone, especially in older stands with closed or high 

density canopies. Using ASTER satellite data, age, and site index as independent 

variables, Gebreslasie, Ahmed and Van Aardt (2010) estimated Eucalyptus 

volume with R
2 

= 0.9. These results confirmed earlier work that suggested that, 

since Eucalyptus plantations are typically a single species monoculture and the 

undergrowth (shrubs and small trees) is sparse, a high proportion of tree stem-

scattering was produced and represented in the SAR image dataset (GAMA; 

SANTOS; MURA, 2016). 

The use of texture measures derived from multispectral optical images to 

improve volume estimates in Eucalyptus plantations has also been documented 

(DUBE; MUTANGA, 2015; GEBRESLASIE; AHMED; VAN AARDT, 2011). 

The general principle is that image texture derivatives can simplify and define 

complex forest canopy structures even in closed canopies, thus reducing 

saturation effects (SARKER; NICHOL, 2011). Recently, Dube and Mutanga 

(2015) demonstrated that certain small-window (or high frequency) texture 

derivatives from Landsat 8 OLI data helped improve aboveground biomass 

estimation in both Eucalyptus and Pinus plantations when compared to the use 

of multispectral reflectance data alone. They also successfully incorporated 

simple band ratios and spectral vegetation indices in their models. The use of 

SAR image texture in Eucalyptus plantation volume estimates has not yet been 

reported, though an earlier forest biomass estimation study with integrated 

multispectral and SAR data showed that textures were effective (CUTLER et al., 

2012). 

Spatial and temporal variations of Eucalyptus plantation growth are 

strongly affected by topography and climate conditions. In general, topography 

controls the hydrologic dynamics of catchments, nutrient, and soil conditions, 

while climate influences growth through variability of incoming solar radiation, 

soil moisture, and temperature (ADAMS; BARNARD; LOOMIS, 2014; DUBE 
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et al., 2017). Scolforo et al. (2017) illustrated that rainfall regime was the 

principal driver for Eucalyptus growth as implied by their fitted regression 

equations in their study in Bahia, northeast of Brazil. In a recent study, Dube and 

Mutanga (2016) improved aboveground biomass prediction accuracy (R
2 

= 0.8 

and RMSE= 19.6 t ha
-1

) by integrating environmental variables (rainfall and 

temperature) and five DEM-based geomorphometric variables (slope, aspect, 

topographic wetness index, elevation, and insolation) with a WorldView-2 

multispectral image of Eucalyptus and Pinus forest plantations in Umgeni 

Catchment, South Africa. In another South Africa study, Dube et al. (2017) 

demonstrated that integrating multispectral SPOT 5 image, stand age, and 

rainfall metrics significantly improved volume estimation in Eucalyptus 

plantations (R
2
 = 0.8 and RMSE = 36.0 m

3  
ha

-1
). 

Many of these studies used regression techniques or machine learning 

algorithms in forest volume or biomass model development. Among them, the 

Random Forest (RF) algorithm is a nonlinear and non-parametric ensemble 

decision-tree method (BREIMAN, 2001) that provides flexible, robust, and 

accurate predictive capabilities for high-dimensional datasets (BELGIU; 

DRĂGU, 2016). RF models for forest attribute estimation (GAO et al., 2016; 

LATIFI; NOTHDURFT; KOCH, 2010; LÓPEZ-SERRANO et al., 2016; WU et 

al., 2016) often outperform alternative methods, such as k-Nearest Neighbor 

(kNN), Support Vector Machine (SVM), Back Propagation Neural Networks 

(BPNN), and Stepwise Linear Regression (LMSTEP). 
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3 FINAL CONSIDERATIONS 

Remotely sensed datasets have already been used to predict stand 

attributes of Eucalyptus plantations; however, the increasing availability of 

ancillary data offers new opportunities for improving forest attribute estimation 

accuracy. In addition, more research is required to investigate the capabilities of 

new high spectral, spatial and temporal resolution satellites, such as Sentinel-1B 

and Sentinel-2A combined with machine learning algorithms in predicting stand 

attributes of Eucalyptus plantations. 

  



28 

 

  



29 

 

REFERENCES 

ADAMS, H. R.; BARNARD, H. R.; LOOMIS, A. K. Topography alters tree 

growth-climate relationships in a semi-arid forested catchment. Ecosphere, New 

York, v. 5, n. 11, p. 1-16, Nov. 2014. 

 

BAGHDADI, N. et al. Evaluation of ALOS/PALSAR L-band data for the 

estimation of Eucalyptus plantations aboveground biomass in Brazil. IEEE 

Journal of Selected Topics in Applied Earth Observations and Remote 

Sensing, New York, v. 8, n. 8, p. 3802-3811, Aug. 2015. 

 

BAGHDADI, N. et al. Testing different methods of forest height and 

aboveground biomass estimations from ICESat/GLAS data in Eucalyptus 

plantations in Brazil. IEEE Journal of Selected Topics in Applied Earth 

Observations and Remote Sensing, New York, v. 7, n. 1, p. 290-299, Jan. 

2014. 

 

BELGIU, M.; DRĂGU, L. Random forest in remote sensing: a review of 

applications and future directions. ISPRS Journal of Photogrammetry and 

Remote Sensing, Amsterdam, v. 144, p. 24-31, 2016. 

 

BERRA, E. F. et al. Estimativa do volume total de madeira em espécies de 

eucalipto a partir de imagens de satélite Landsat. Ciência Florestal, Santa 

Maria, v. 22, n. 4, p. 853-864, 2012. 

 

BRAZILIAN TREE INDUSTRY. Brazilian tree industry: annual report. São 

Paulo, 2017. 

 

BREIMAN, L. Random forests. Machine Learning, Boston, v. 45, n. 1, p. 5-32, 

2001. 

 

CAMPOE, O. C. et al. Stem production, light absorption and light use efficiency 

between dominant and non-dominant trees of Eucalyptus grandis across a 

productivity gradient in Brazil. Forest Ecology and Management, Amsterdam, 

v. 288, p. 14-20, 2013. 

 

CANAVESI, V.; PONZONI, F. J.; VALERIANO, M. M. Estimativa de volume 

de madeira em plantios de Eucalyptus spp. utilizando dados hiperespectrais e 

dados topográficos. Revista Árvore, Viçosa, MG, v. 34, n. 3, p. 539-549, jun. 

2010. 

 



30 

CASTILLO, J. A. A. et al. Estimation and mapping of above-ground biomass of 

mangrove forests and their replacement land uses in the Philippines using 

Sentinel imagery. ISPRS Journal of Photogrammetry and Remote Sensing, 

Amsterdam, v. 134, p. 70-85, 2017. 

 

COOPS, N. C. et al. Assessment of QuickBird high spatial resolution imagery to 

detect red attack damage due to mountain pine beetle infestation. Remote 

Sensing of Environment, New York, v. 103, n. 1, p. 67-80, 2006. 

 

CUTLER, M. E. J. et al. Estimating tropical forest biomass with a combination 

of SAR image texture and Landsat TM data: an assessment of predictions 

between regions. ISPRS Journal of Photogrammetry and Remote Sensing, 

Amsterdam, v. 70, p. 66-77, 2012. 

 

DUBE, T. et al. Predicting Eucalyptus spp. stand volume in Zululand, South 

Africa: an analysis using a stochastic gradient boosting regression ensemble 

with multi-source data sets. International Journal of Remote Sensing, 

Basingstoke, v. 36, n. 14, p. 3751-3772, July 2015. 

 

DUBE, T. et al. Stand-volume estimation from multi-source data for coppiced 

and high forest Eucalyptus spp. silvicultural systems in KwaZulu-Natal, South 

Africa. ISPRS Journal of Photogrammetry and Remote Sensing, 

Amsterdam, v. 132, p. 162-169, Oct. 2017. 

 

DUBE, T.; MUTANGA, O. Investigating the robustness of the new Landsat-8 

Operational Land Imager derived texture metrics in estimating plantation forest 

aboveground biomass in resource constrained areas. ISPRS Journal of 

Photogrammetry and Remote Sensing, Amsterdam, v. 108, p. 12-32, 2015. 

 

DUBE, T.; MUTANGA, O. The impact of integrating WorldView-2 sensor and 

environmental variables in estimating plantation forest species aboveground 

biomass and carbon stocks in uMgeni Catchment, South Africa. ISPRS Journal 

of Photogrammetry and Remote Sensing, Amsterdam, v. 119, p. 415-425, 

Sept. 2016. 

 

FRANKLIN, S.; AHMED, O. Object-based Wetland characterization using 

Radarsat-2 Quad-Polarimetric SAR Data, Landsat-8 OLI Imagery, and airborne 

lidar-derived geomorphometric variables. Photogrammetric Engineering & 

Remote Sensing, Falls Church, v. 83, n. 1, p. 27-36, Jan. 2017. 

 

GAMA, F. F.; SANTOS, J. R. dos; MURA, J. C. Continuous monitoring of 

biophysical Eucalyptus sp. parameters using interferometric synthetic aperture 



31 

 

radar data in P and X bands. Journal of Applied Remote Sensing, Orlando, v. 

10, n. 2, p. 26002-1-26002-15, Apr./June 2016. 

 

GAMA, F. F.; SANTOS, J. R. dos; MURA, J. C. Eucalyptus biomass and 

volume estimation using interferometric and polarimetric SAR Data. Remote 

Sensing, Basel, v. 2, p. 939-956, 2010. 

 

GAO, T. et al. Timber production assessment of a plantation forest: an 

integrated framework with field-based inventory, multi-source remote sensing 

data and forest management history. International Journal of Applied Earth 

Observation and Geoinformation, Enschede, v. 52, p. 155-165, 2016. 

 

GEBRESLASIE, M. T.; AHMED, F. B.; VAN AARDT, J. A. N. Extracting 

structural attributes from IKONOS imagery for eucalyptus plantation forests in 

Kwazulu-Natal, South Africa, using image texture analysis and artificial neural 

networks. International Journal of Remote Sensing, Basingstoke, v. 32, n. 22, 

p. 677-7701, 2011. 

 

GEBRESLASIE, M. T.; AHMED, F. B.; VAN AARDT, J. A. N. Predicting 

forest structural attributes using ancillary data and ASTER satellite data. 

International Journal of Applied Earth Observation and Geoinformation, 

Enschede, v. 12S, p. S23-S26, 2010. 

 

GONÇALVES, J. L. de M. et al. Integrating genetic and silvicultural strategies 

to minimize abiotic and biotic constraints in Brazilian eucalypt plantations. 

Forest Ecology and Management, Amsterdam, v. 301, p. 6-27, 2013. 

 

GONZÁLEZ-GARCÍA, M. et al. Dynamic growth and yield model including 

environmental factors for Eucalyptus nitens (Deane & Maiden) Maiden short 

rotation woody crops in Northwest Spain. New Forests, Dordrecht, v. 46, n. 3, 

p. 387-407, 2015. 

 

HAWRYŁO, P.; WĘŻYK, P. Predicting growing stock volume of Scots Pine 

stands using Sentinel-2 satellite imagery and airborne image-derived point 

clouds. Forests, Basel, v. 9, n. 5, p. 274-289, May 2018. 

 

 

ISMAIL, R. et al. Assessing the utility of ALOS PALSAR and SPOT 4 to 

predict timber volumes in even-aged Eucalyptus plantations located in Zululand, 

South Africa. Southern Forests: A Journal of Forest Science, London, v. 77, n. 

3, p. 203-211, 2015. 

 



32 

LATIFI, H.; NOTHDURFT, A.; KOCH, B. Non-parametric prediction and 

mapping of standing timber volume and biomass in a temperate forest: 

application of multiple optical/LiDAR-derived predictors. Forestry, Oxford, v. 

83, n. 4, p. 395-407, 2010. 

 

LÓPEZ-SERRANO, P. M. et al. A comparison of machine learning techniques 

applied to Landsat-5 TM spectral data for biomass estimation. Canadian 

Journal of Remote Sensing, Ottawa, v. 42, n. 6, p. 690-705, 2016. 

 

MURA, M. et al. Exploiting the capabilities of the Sentinel-2 multi spectral 

instrument for predicting growing stock volume in forest ecosystems. 

International Journal of Applied Earth Observation and Geoinformation, 

Enschede, v. 66, p. 126-134, 2018. 

 

NOVELLI, A. et al. Performance evaluation of object based greenhouse 

detection from Sentinel-2 MSI and Landsat 8 OLI data: a case study from 

Almería (Spain). International Journal of Applied Earth Observation and 

Geoinformation, Enschede, v. 52, p. 403-411, 2016. 

 

PULITI, S. et al. Combining UAV and Sentinel-2 auxiliary data for forest 

growing stock volume estimation through hierarchical model-based inference. 

Remote Sensing of Environment, New York, v. 204, p. 485-497, 2018. 

 

RAIMUNDO, M. R. et al. Geostatistics applied to growth estimates in 

continuous forest inventories. Forest Science, Bethesda, v. 63, n. 1, p. 29-38, 

Feb. 2017. 

 

SARKER, L. R.; NICHOL, J. E. Improved forest biomass estimates using 

ALOS AVNIR-2 texture indices. Remote Sensing of Environment, New York, 

v. 115, n. 4, p. 968-977, 2011. 

 

SCOLFORO, H. F. et al. Incorporating rainfall data to better plan Eucalyptus 

clones deployment in Eastern Brazil. Forest Ecology and Management, 

Amsterdam, v. 391, p. 145-153, 2017. 

 

SCOLFORO, H. F. et al. Modeling dominant height growth of eucalyptus 

plantations with parameters conditioned to climatic variations. Forest Ecology 

and Management, Amsterdam, v. 380, p. 182-195, 2016. 

 

SHAO, Z.; ZHANG, L.; WANG, L. Stacked sparse autoencoder modeling using 

the synergy of airborne LiDAR and satellite optical and SAR data to map forest 

above-ground biomass. IEEE Journal of Selected Topics in Applied Earth 



33 

 

Observations and Remote Sensing, New York, v. 10, n. 12, p. 1-14, Dec. 

2017. 

 

WERE, K. et al. A comparative assessment of support vector regression, 

artificial neural networks, and random forests for predicting and mapping soil 

organic carbon stocks across an Afromontane landscape. Ecological Indicators, 

London, v. 52, p. 394-403, 2015. 

 

WU, C. et al. Comparison of machine-learning methods for above-ground 

biomass estimation based on Landsat imagery. Journal of Applied Remote 

Sensing, Orlando, v. 10, n. 3, p. 35010-1-35010-17, July/Sept. 2016. 

 

ZHANG, J. et al. Estimating aboveground biomass of Pinus densata-dominated 

forests using Landsat time series and permanent sample plot data. Journal of 

Forestry Research, London, p. 1-18, 2018. 

  



34 

 
  



35 

 

SECOND PART – ARTICLES 

ARTICLE 1 - SPATIAL PREDICTION OF BASAL AREA AND 

VOLUME IN EUCALYPTUS STANDS USING LANDSAT TM DATA:  

AN ASSESSMENT OF PREDICTION METHODS 

 

 

 

Aliny Aparecida dos Reis
1*

, Mônica Canaan Carvalho
1
, José Marcio de Mello

1
, 

Lucas Rezende Gomide
1
, Antônio Carlos Ferraz Filho

1
 and Fausto Weimar 

Acerbi Junior
1 

 

1
Department of Forest Science, Federal University of Lavras – UFLA, PO Box 

3037, Lavras, Minas Gerais, Brazil, Zip Code 37200-000. 

E-mails: alinyreis@hotmail.com, monicacanaan@gmail.com, 

josemarcio@dcf.ufla.br, lucasgomide@dcf.ufla.br, acferrazfilho@gmail.com, 

fausto@dcf.ufla.br 

 

 

 

 

 

 

 

Publication status: Published in the New Zealand Journal of Forestry Science 

DOI: 10.1186/s40490-017-0108-0 

  



36 

Background: In fast-growing forests such as Eucalyptus plantations, the correct 

determination of stand productivity is essential to aid decision making processes 

and ensure the efficiency of the wood supply chain. In the past decade, advances 

in remote sensing and computational methods have yielded new tools, 

techniques, and technologies that have led to improvements in forest 

management and forest productivity assessments. Our aim was to estimate and 

map the basal area and volume of Eucalyptus stands through the integration of 

forest inventory, remote sensing, parametric, and nonparametric methods of 

spatial prediction.  

Methods: This study was conducted in twenty 5-year-old clonal stands (362 ha) 

of Eucalyptus urophylla S.T.Blake x Eucalyptus camaldulensis Dehnh. The 

stands are located in the northwest region of Minas Gerais state, Brazil. Basal 

area and volume data were obtained from forest inventory operations carried out 

in the field. Spectral data were collected from a Landsat 5 TM satellite image, 

composed of spectral bands and vegetation indices. Multiple linear regression 

(MLR), Random Forest (RF), Support Vector Machine (SVM), and Artificial 

Neural Networks (ANN) methods were used for basal area and volume 

estimation. Using ordinary kriging, we spatialised the residuals generated by the 

spatial prediction methods for the correction of trends in the estimates and more 

detailing of the spatial behavior of basal area and volume. 

Results: The ND54 index was the spectral variable that had the best correlation 

values with basal area (r = -0.91) and volume (r = -0.52), and was also the 

variable that most contributed to basal area and volume estimates by the MLR 

and RF methods. The RF algorithm presented smaller basal area and volume 

errors when compared to other machine learning algorithms and MLR. The 

addition of residual kriging in spatial prediction methods did not necessarily 

result in relative improvements in the estimations of these methods.  
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Conclusions:  Random Forest was the best method of spatial prediction and 

mapping of basal area and volume in the study area. The combination of spatial 

prediction methods with residual kriging did not result in relative improvement 

of spatial prediction accuracy of basal area and volume in all methods assessed 

in this study, and there is not always a spatial dependency structure in the 

residuals of a spatial prediction method. The approaches used in this study 

provide a frame work for integrating field and multispectral data, highlighting 

methods that greatly improve spatial prediction of basal area and volume 

estimation in Eucalyptus stands. This frame work has potential to support fast 

growth plantation monitoring, offering options for a robust analysis of high-

dimensional data. 

Keywords: forest inventory, machine-learning algorithms, multiple linear 

regression, random forest, support vector machine, artificial neural networks. 

 

Background 

 The Brazilian forestry sector represents an important share of the 

products, taxes, jobs, and income generation of the country, and accounts for 

3.5% of the national GDP (IBÁ 2015). This is in large part due to the successful 

establishment of fast-grown plantations of Eucalyptus species, which currently 

occupy around 5.6 million hectares (71.9% of the total planted forest area in 

Brazil) and represent 17% of the harvested wood in the world (IBÁ 2014, IBÁ 

2015).  

The Eucalyptus genus has more than 500 species, and a subset of which 

are used in fast-growing plantations (Barrios et al., 2015), commonly located in 

tropical and sub-tropical regions, and more recently in temperate regions. Spain 

(González-García et al. 2015), Portugal (Lopes et al. 2009), Uruguay (Barrios et 

al. 2015), Chile (Watt et al. 2014), South Africa (Dye et al. 2004), Australia 

(Verma et al., 2014), and the United States (Wear et al., 2015) are some 
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examples of productive Eucalyptus plantations in temperate regions that have 

cutting cycles ranging from 8 to 12 years. In tropical regions such as Brazil, the 

cutting cycles of Eucalyptus plantations range from 5 to 7 years (Guedes et al. 

2015, Scolforo et al. 2016).  

Timber production is the main ecosystem service of planted forests and 

the main management objective for these plantations (Gao et al., 2016). In the 

case of fast-growing plantations, the correct determination of stand productivity 

is essential to support forest management planning strategies (González-García 

et al. 2015, Retslaff et al. 2015). Traditionally, productivity assessments of a 

plantation are carried out based on field measurements of the diameter at breast 

height (DBH) and tree height via forest inventory. However, in fast-growing 

plantations, field-based inventory programmes may not be sufficient to capture 

productivity differences across the entire area, such as those arising from losses 

due to pest and disease attacks (Coops et al. 2006), or from climatic anomalies 

(González-García et al. 2015, Scolforo et al. 2016).  

In the past decade, advances in Geographical Information Systems 

(GIS), Global Positioning Systems (GPS), and remote sensing have provided 

new tools, techniques, and technologies to support forest management. Thus, 

low-cost and accurate forest productivity assessment can be made, as well as 

allowing the collection of information in areas not sampled by forest inventory 

(Morgenroth and Visser 2013). The analysis of remote sensing information 

combined with field data has been used by several authors to fill the information 

gap left by data collected only in the field (Watt et al. 2016, Boisvenue et al. 

2016, Moreno et al. 2016, Fayad et al. 2016, Vicharnakorn et al. 2014). Ponzoni 

et al. (2015) used data collected from Landsat 5 TM images for spectral-

temporal characterisation of Eucalyptus canopies. Berra et al. (2012) estimated 

the volume of a Eucalyptus plantation in the southern region of Brazil from 

Landsat 5 TM images. Canavesi et al. (2010) used hyperspectral data from the 
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Hyperion EO-1 sensor for the volume estimation of Eucalyptus plantations 

under different relief conditions. The results found by these authors corroborate 

the potential use of data collected by remote sensing to estimate the productivity 

of Eucalyptus plantations. 

In parallel to the advances in remote sensing, computational techniques, 

such as machine-learning algorithms (MLA), have been increasingly used to 

model spectral and biological data. These techniques overcome the difficulties 

of classical statistical methods such as spatial correlation, non-linearity of data, 

and overfitting (Were et al. 2015). In addition, these algorithms allow the use of 

categorical data, with statistical noise and incomplete data, and therefore are 

able to address needs under different dataset scenarios (Breiman 2001). 

Several studies have shown the superiority of machine-learning 

algorithms in relation to classical statistics in several areas, such as in forest 

management. For instance, Ahmed et al. (2015) modelled a Landsat time-series 

data structure in conjunction with LiDAR data and found that the Random 

Forest algorithm achieved better results than multiple regression for all forest 

classes. In another study, García-Gutiérrez et al. (2015) found that machine-

learning algorithms (mainly Support Vector Machine) were superior for 

modelling a range of forest variables (viz., aboveground biomass, basal area, 

dominant height, mean height, and volume) compared with multiple linear 

regression. Machine-learning algorithms have also been shown to provide an 

economical and accurate way to estimate aboveground biomass in forests from 

Landsat satellite images (Wu et al. 2016). These studies highlight the benefits of 

applying more robust techniques in solving problems previously resolved by 

traditional statistical modeling. 

In this context, the aims of this study were: (i) to estimate and map basal 

area and volume of a Eucalyptus plantation through the integration of forest 

inventory, remote sensing, and parametric and nonparametric methods of spatial 
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prediction; (ii) to compare the performance of machine-learning algorithms 

(Random Forest, Support Vector Machine, and Artificial Neural Networks) with 

the linear regression model, and (iii) to assess the improvement in basal area and 

volume estimation with the addition of residual kriging in spatial prediction 

methods.   

 

Methods  

Study area 

 The study area is located in Minas Gerais state, the fourth-largest state 

in Brazil, with an area of 586,521 km². Minas Gerais state has the largest area 

occupied by plantations of the Eucalyptus genus in the country (1,400,232 ha), 

corresponding to 25.2% of Brazilian Eucalyptus plantations. The wood from 

these plantations is mainly used for the production of charcoal, as well as pulp, 

lumber, and panels (IBÁ 2015).  

The Eucalyptus clonal stands under study are located in Lagoa Grande 

municipality, in the northwest of Minas Gerais state (lat. 17º43'00"S - 

17º44'00"S, long. 46° 32'00"W - 46°33'00"W, elevation 560 m a.s.l.) (Figure 1). 

According to the Köppen climatic classification system, the climate in this 

region is Aw, classified as a tropical savanna climate, with drier months during 

the winter, high annual precipitation in the summer and average temperature of 

all months greater than 18 °C (Alvares et al 2013). The average annual rainfall 

and the average monthly rainfall of the dry and wet seasons are 1,430 mm, 8 

mm, and 257 mm, respectively. 

 

 

 

 

 



41 

 

 

 

Figure 1. Geographic location of the Eucalyptus stands and sampling grid. 

 

Field data description and sampling 

This study was undertaken in a set of 20 clonal stands of Eucalyptus 

urophylla S.T.Blake x Eucalyptus camaldulensis Dehnh, totaling an area of 

362.2 ha. These stands were planted in April and May 2004, with initial spacing 

of either 3 x 2 m or 3 x 3 m. The forest inventory was carried out in June and 

July 2009 on a set of 35 georeferenced square plots of 400 m
2
. The plots were 

georeferenced in the field with GPS (Garmin 60CSx, Garmin Ltd., Olathe, 

Kansas, USA). The sampling procedure adopted was systematic, allocating 

approximately one plot per 10 ha of forest. In each plot, the diameter at breast 

height (DBH) of all stems was measured, as well as the total height of the first 

fifteen trees with normal stems (without bifurcation or any other defect) and 

height of dominant trees (the 100 largest diameter trees per hectare). Descriptive 

statistics of the variables collected in the field are shown in Table 1. Estimates of 

basal area (m
2 

ha
-1

), and total stem volume (m
3 

ha
-1

) were obtained from the 

information collected in the plots. 
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Table 1. Descriptive statistics of the variables collected in the field. 

Statistic DBH H Hd 

Minimum 11.98 16.98 19.40 

Maximum 15.45 24.63 26.38 

Mean 14.02 21.18 22.98 

Standard deviation 0.85 2.33 1.92 

Where: DBH = diameter at breast height (cm); H = total height (m); Hd = dominant height (m). 

 

Remote sensing data and processing 

Spectral data were obtained from a Landsat 5 TM satellite image, with 

spatial resolution of 30 m, on the date of 06/25/2009, corresponding with field 

data collection, in orbit 220, point 072, in bands TM1 (0.45 – 0.52 µm), TM2 

(0.52-0.60 μm), TM3 (0.63-0.69 μm), TM4 (0.76-0.90 μm), TM5 (1.55 – 1.75 

μm), and TM7 (2.18 – 2.35 μm). The Landsat 5 TM Surface Reflectance 

Climate Data Record (CDR) was used, which is a Landsat Level-2A product 

generated by the Landsat Ecosystem Disturbance Adaptive Processing System 

(LEDAPS) (Masek et al. 2006) obtained from the USGS database (United States 

Geological Survey) (USGS, 2017). These images already contain radiometric 

calibration, and geometric and atmospheric corrections.  

In addition, vegetation indices using the red, near infrared and short 

wave infrared spectral bands of Landsat 5 TM (Table 2) were calculated, as 

described by Lu et al. (2004) and Ponzoni et al. (2012). The Normalized 

Difference Vegetation Index (NDVI) is the most widely used vegetation index 

for retrieval of forest biophysical parameters (Rouse et al. 1973, Lu et al. 2004). 

The Soil-Adjusted Vegetation Index (SAVI) and Modified Soil-Adjusted 

Vegetation Index (MSAVI) are soil adjusted vegetation indices used to reduce 

the effect of soil background reflectance (Qi et al. 1994). The Enhanced 

Vegetation Index (EVI) index was developed to optimise the vegetation signal, 

correcting reflected light distortions caused by particulate matter suspended in 
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the air, as well as by influence of background data under the vegetation canopy 

(Justice et al. 1998). The Global Environment Monitoring Index (GEMI) 

minimises atmospheric effects, similar to the EVI and minimises observational 

angular effects in the observed vegetation index signal (Pinty and Verstraete 

1992). 

 

Table 2. Vegetation indices used in the spectral characterisation of the 

Eucalyptus stands. 

Vegetation 

indices 
Formulation Reference 

NDVI (TM4 - TM3)/(TM4 + TM3) Rouse et al. (1973) 

ND53 (TM5 - TM3)/(TM5 + TM3) Huete et al. (2002) 

ND54 (TM5 - TM4)/(TM5 + TM4) Huete et al. (2002) 

ND57 (TM5 - TM7)/(TM5 + TM7) Huete et al. (2002) 

SAVI [(TM4 -  TM3)/(TM4 + TM3 + 0.5)].(1.5) Huete (1988) 

MSAVI [(2TM4+1)- √(2TM4+1)2-8(TM4-2TM3) ] /2 Qi et al. (1994) 

EVI 2.5* [(TM4-TM3)/(TM4+6TM3- 7.5TM1+1)] Justice et al. (1998) 

GEMI 

n(1-0.25n).[(TM3-0.125)/(1-TM3)] 

n=
2(TM42- TM32)+1.5TM4+0.5TM3

TM4+TM3+0.5
 

Pinty and Verstraete 

(1992) 

Where: TM= Thematic Mapper, ND= Normalized Difference, NDVI= Normalized Difference 

Vegetation Index; SAVI= Soil-Adjusted Vegetation Index; MSAVI= Modified Soil-Adjusted 

Vegetation Index; EVI= Enhanced vegetation Index; GEMI= Global Environment Monitoring 

Index. 

 

Dataset integration 

 The choice of an appropriate pixel size is one of the issues to be 

considered when using remote sensing data to estimate dendrometric 

characteristics. Due to easy accessibility and affordability, a number of studies 

have employed Landsat images and found statistically significant correlations 

between remotely-sensed data and dendrometric characteristics using field plots 

ranging from 315 m² to 2,500 m² (Dube and Mutanga 2015, López-Sánchez et 

al. 2014, Zhang et al. 2014,  López-Serrano et al. 2016).  
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 Although the size of a single plot (20 x 20 m) in this study does not 

cover a Landsat pixel, we considered that a plot represents an area larger than its 

size. As the sampling design was 1 plot per hectare, we ensured that each plot 

matched with the reference pixel in order to extract reliable data.  

 

Spatial modelling and prediction methods 

Exploratory data analysis 

Spectral response was extracted from the Landsat TM bands and 

vegetation indices from the geographical coordinates of the forest inventory 

plots. Thus, the plot database was composed of basal area (m
2 

ha
-1

), volume (m
3 

ha
-1

), spectral bands values, and vegetation indices values. The total database (35 

plots) was systematically divided into two datasets: prediction or fitting set (70% 

of the database) and validation set (30% of the database). Therefore, 25 plots 

were used for basal area and volume predictions, and 10 plots were used for 

validation of the different approaches to estimate basal area and volume in the 

Eucalyptus stands under study. 

Pearson correlation analysis was carried out among basal area, volume, 

values of spectral bands and vegetation indices. From these correlations, the 

relationship between the dendrometric characteristics of Eucalyptus stands and 

its spectral response in Landsat images was explored. 

 

Multiple linear regression analysis (MLR) 

Basal area and volume estimation were accomplished through multiple 

linear regression analysis (MLR). A stepwise variable elimination method was 

used in conjunction with the Akaike Information Criterion (AIC) to select only 

those spectral variables that “best” explained basal area and volume variation. 

The residuals from regression models were analysed to assess the existence of 

trends in the errors. The Variance Inflation Factor (VIF) was used to detect 
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possible correlations between explanatory variables (multicollinearity). The 

adopted VIF cutoff value was 10.  

 

Random Forest (RF) 

The Random Forest (RF) algorithm, initially proposed by Breiman 

(2001), is an ensemble method that generates a set of individually trained 

decision trees and combines their results. The greatest advantage of these 

decision trees as regression methods is that they are able to accurately describe 

complex relationships among multiple variables, and by aggregating these 

decision trees, more accurate solutions are generated (Gleason and Im 2012). In 

addition to these characteristics, RF is an easy parameterisation method 

(Immitzer et al. 2012). This method has shown great potential in regression 

studies with integration of spectral data, in some cases generating better results 

than conventional techniques (Stojanova et al. 2010, Dube et al. 2014, García-

Gutiérrez et al. 2015, Görgens et al. 2015, Wu et al. 2016). The RF algorithm 

fitted in this study is implemented in the open-source software WEKA 3.8 

(Frank et al. 2016). Tests were carried out with the exchange of tree numbers 

and attribute numbers to be drawn. Then, 20 trees with 10 attributes to be drawn 

by node for basal area and 80 trees and 11 attributes for volume were fixed.  

 

Support Vector Machine (SVM) 

Support Vector Machines (SVMs) operate by assuming that each set of 

inputs will have a unique relation to the response variable, and that the grouping 

and the relation of these predictors to one another is sufficient to identify rules 

that can be used to predict the response variable from new input sets. For this, 

SVMs project the input space data into a feature space with a much larger 

dimension, enabling linearly non-separable data to become separable in the 

feature space. This method has been successfully used in forestry classification 
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problems (Huang et al. 2008, Shao and Lunetta 2012) and more recently in 

regression problems with the use of spectral data (García-Gutiérrez et al. 2015, 

Wu et al. 2016). The Kernel function used in the present study was the Gaussian 

or radial basis function (RBF). The algorithm used is implemented in WEKA 

3.8 software under the Sequential Minimal Optimization (SMO) function. 

Values of parameters C and σ (bandwidth or influence range of each training 

point in the RBF) were tested within the interval (10i)
i=-3,-2,-1,0,1,2,3

, where the 

least squared mean error configuration was chosen for application. For basal 

area and volume, selected C and σ values were 10 and 0.1, and 100 and 0.01, 

respectively.  

 

Artificial Neural Networks (ANN) 

Artificial Neural Networks (ANNs) are a parallel-distributed 

information processing system that simulates the working of neurons in the 

human brain, being able to learn from examples. Artificial Neural Networks are 

widely used to model complex and non-linear relations between inputs and 

outputs or to determine patterns in data (Diamantopoulou 2012). The use of this 

technique in conjunction with remote sensing data is consolidated in several 

studies (Cluter et al. 2012, García-Gutiérrez et al. 2015, Rodriguez-Galiano et al. 

2015, Were et al. 2015). We used the ANN obtained by running the Multilayer 

Perceptron function (of the multilayer perceptron type) provided by WEKA 3.8 

software. The training of neural networks occurred through the back-propagation 

algorithm, which fit the weights of all the layers of the network from the 

backpropagation of the error, obtained in the output layer. The weights updating 

was carried out according to the error, learning rate, and momentum terms 

(Delta rule). The sigmoidal activation function was employed in all neurons. 

Determined by previous tests, ANNs were structured with 14 neurons in the 

input layer (number of variables), 1 neuron in the hidden layer, and 1 neuron in 
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the output layer, corresponding to estimated basal area or volume. The learning 

rate, the momentum term, and iteration numbers were fixed at 0.3, 0.5, and 500 

for basal area, and 0.2, 0.7, and 500 for volume, respectively.  

 

Relative importance evaluation 

The variable importance was assessed for each model with a removal-

based approach in order to avoid the limited interpretability of the MLA and to 

verify how each independent variable contribute to the performance of machine-

learning algorithms (RF, SVM, and ANN). All algorithms were adjusted n 

times, with n being the number of available variables. At each time, one variable 

was removed from the training set and then the root mean square error (RMSE) 

of the algorithm was quantified. At the end, the obtained errors were normalised 

by the ratio of the largest RMSE so that they were between 0 and 1 and 

multiplied by 100 (Were et al. 2015). The variable that results in the highest 

RMSE when removed from the database is the variable with the highest relative 

importance within the model. This methodology was chosen because it can be 

consistently applied to all algorithms, allowing comparisons of variable 

contribution between the methods. 

 

Geostatistical modelling of prediction methods errors 

Spatial prediction methods capture the average behavior of the main 

variable, allowing the identification of its general spatial behavior, without 

detailing more specific areas or regions. For details of specific regions, estimates 

obtained exclusively from the auxiliary variables need to be corrected. Thus, 

residuals generated by spatial prediction methods (MLR, RF, SVM, and ANN) 

were used for the correction of trends in the estimates and for detailing the 

spatial behaviour of the main variables (basal area and volume) using ordinary 

kriging. The interpolated values of the residuals were then added to the estimates 
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of the spatial prediction methods (MLR, RF, SVM, and ANN). Thus, we 

obtained the basal area and volume estimates corrected by the ordinary kriging 

of the residuals for each spatial prediction method.  

For the application of ordinary kriging to the spatial prediction method 

residuals, we considered the stationarity presupposition of the intrinsic 

hypothesis (Journel and Huijbregts 1978), through fitting of theoretical functions 

to experimental semivariogram models. Spherical, exponential, and Gaussian 

models were fitted to the semivariogram of the residuals from each spatial 

prediction method using Weighted Least Squares. The semivariogram 

parameters (nugget (τ
2
), sill (σ

2
), and range (ϕ)) were calculated from the best 

fitted models, which provided information about the spatial structure as well as 

input parameters for the kriging interpolation. The nugget represents the 

minimum semivariance among different sampling intervals. Nugget values 

greater than zero represent a combination of experimental error and of 

unresolved spatial variability occurring at scales smaller than inter-sampling lag 

distance. Sill is the plateau reached by the values of semivariance, and indicates 

the amount of variation than can be explained by the spatial structure of the data. 

Range is the distance at which the semivariogram reaches the plateau, indicating 

the distance which values are spatially correlated. The evaluation of the 

performance of each semivariogram model and the selection of the best models 

were based on cross-validation, which estimates the reduced average error 

(RAE) and the standard deviation of the reduced average error (SRE) 

(Yamamoto and Landim 2013). 

 

Validation and assessment of the prediction methods 

The different approaches to basal area and volume estimation of 

Eucalyptus stands were evaluated by comparing the basic statistics of the 

predicted maps (mean and standard deviation) with the estimates obtained from 
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the forest inventory, and through the discrepancies between observed and 

predicted values in the fitting and validation datasets. These discrepancies were 

evaluated using the mean error (ME), the mean absolute error (MAE), and the 

root mean square error (RMSE), as described in Equations 1 – 3.  

ME=
1

N
∑ (Xi - X̂i)

N
i=1                                                                                             (1) 

MAE=
1

N
∑ |Xi - X̂i|

N
i=1                                                                                           (2) 

RMSE=√
1

N
 ∑ (Xi - X̂i)

2N
i=1                                                                                  (3) 

where N is the number of values in the dataset; X̂i is the estimated value of the 

main variable; Xi is the observed value in the prediction and validation sets.  

 The Relative Improvement (RI) achieved by residual kriging for a 

particular spatial prediction method was calculated by comparing the change in 

RMSE when the residual kriging was applied using Equation 4. 

RI= 
RMSEspm- RMSE

spm-RK

RMSEspm
*100%                                                                           (4) 

where RMSEspm is the root mean square error of a spatial prediction method, 

RMSEspm-RK is the root mean square error of the spatial prediction method when 

residual kriging is added to this method. 

Data analysis for this study was performed using the following software: 

R (R Core Team 2016) with the geoR package (Ribeiro Júnior and Diggle 

2001), WEKA 3.8 (Frank et al. 2016), and ArcGis version 10.1 (Esri 2010) with 

Geostatistical Analyst extension (Esri 2010). 

  

Results 

Descriptive statistic of the measured basal area and volume 

 Basal area ranged from 10.07 to 21.63 m
2 
ha

-1
, with average of 16.86 m

2 

ha
-1 

and standard deviation of 2.4 m
2 

ha
-1

 (Table 3). The average volume was 

169.34 m
3 

ha
-1

 with a standard deviation of 29.66 m
3 

ha
-1

 and range from 95.80 
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up to 213.85 m
3 

ha
-1

. Basal area had a lower coefficient of variation (CV = 

14.26%) compared to volume (CV = 17.51%), demonstrating a considerable 

homogeneity of this dendrometric characteristic in the evaluated Eucalyptus 

stands. 

 

Table 3. Descriptive statistics obtained from forest inventory processing using 

the estimators of Simple Random Sampling (SRS).  

Estimators 
Basal Area Volume 

(m²)* (m
2 
ha

-1
) (m³)* (m

3 
ha

-1
) 

Minimum 0.91 10.07 8.62 95.80 

Maximum 1.95 21.63 19.25 213.85 

Mean  1.52 16.86 15.24 169.34 

Standard deviation  0.22 2.4 2.67 29.66 

Coefficient of variation (%) 14.26 17.51 

Sampling error (%) 4.89 6.00 

Total confidence interval 5807.9 – 6405.0 57652.7 – 65018.7 

*Estimates obtained for an area of 900 m² (corresponding to the area of each pixel of the Landsat 

images). 

 

Correlation among basal area, volume, spectral bands, and vegetation 

indices 

The correlation between plot basal area and the different spectral bands 

and their ratios (Table 4) ranged from -0.91 (ND54) to 0.15 (TM2). The SAVI, 

MSAVI, GEMI, and EVI indices were also highly correlated with basal area (r > 

0.85). The correlation between plot volume and the spectral bands and ratios 

ranged from -0.52 (ND54) to -0.02 (TM2). The NDVI (r = 0.49) and SAVI (r = 

0.47) indices also had high correlations with volume, but these were lower in 

magnitude when compared with those for basal area. Many of the spectral bands 

and ratios were also highly correlated with each other (r > 0.90), which can be 
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considered a drawback due to possible multicollinearity problems in linear 

regression models.  



 

 

5
2
 Table 4. Pearson's correlation coefficient (r) among basal area, volume, and spectral data for the Eucalyptus stands.  

Variables 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 

1. G 1.00 

               
2. V 0.70* 1.00 

              
3. TM1 -0.24ns 0.10ns 1.00 

             
4. TM2 0.15ns -0.02ns 0.59* 1.00 

            
5. TM3 -0.20ns -0.10ns 0.80* 0.72* 1.00 

           
6. TM4 0.82* 0.41* -0.05ns 0.43* 0.12ns 1.00 

          
7. TM5 -0.66* -0.36ns 0.53* 0.31ns 0.68* -0.40* 1.00 

         
8. TM7 -0.68* -0.40* 0.56* 0.32ns 0.66* -0.42* 0.90* 1.00 

        
9. NDVI 0.83* 0.49* -0.53* -0.13ns -0.55* 0.75* -0.78* -0.82* 1.00 

       
10. ND53 -0.60* -0.32ns -0.29ns -0.50* -0.37ns -0.66* 0.43* 0.31ns -0.31ns 1.00 

      
11. ND54 -0.91* -0.52* 0.31ns -0.09ns 0.30ns -0.86* 0.80* 0.78* -0.93* 0.65* 1.00 

     
12. ND57 0.45* 0.27ns -0.49* -0.28ns -0.49* 0.27ns -0.50* -0.82* 0.60* 0.00ns -0.48* 1.00 

    
13. SAVI 0.88* 0.47* -0.23ns 0.25ns -0.12ns 0.97* -0.57* -0.60* 0.89* -0.57* -0.94* 0.41* 1.00 

   
14. MSAVI 0.88* 0.45* -0.36ns 0.13ns -0.27ns 0.92 -0.65* -0.67* 0.94* -0.50* -0.95* 0.46* 0.99* 1.00 

  
15. GEMI 0.86* 0.45* -0.14ns 0.34ns 0.00ns 0.99* -0.49* -0.52* 0.83* -0.62* -0.91* 0.35ns 0.99* 0.96* 1.00 

 
16. EVI 0.87* 0.42* -0.41* 0.12ns -0.28ns 0.92* -0.64* -0.67* 0.94* -0.48* -0.94* 0.47* 0.98* 1.00* 0.96* 1.00 

Where: V= volume (m³ ha-1); G= basal area (m² ha-1); TM= Thematic Mapper; ND= Normalized Difference; NDVI= Normalized Difference 

Vegetation Index; SAVI= Soil-Adjusted Vegetation Index; MSAVI= Modified Soil-Adjusted Vegetation Index; GEMI= Global Environment 

Monitoring Index; EVI= Enhanced vegetation Index; ns= not significant at 5% and *significant at 5%. 
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Spatial prediction of basal area and volume by MLR, RF, SVM, and ANN 

 The spectral data examined had several significant correlations with the 

basal area and volume data (Table 4). However, they contributed in a reduced 

form to the regression models due to multicollinearity problems, which resulted 

in final regression models with few significant explanatory variables (Table 5). 

The basal area model only included the ND54 vegetation index (Table 5), while 

the volume model included the TM1 band and NDVI. The coefficient of 

determination was high for the basal area model (R² = 0.81), but was much 

lower for the volume model (R
2
 = 0.37).  

 

Table 5. Regression model fitted for basal area and volume estimation for the 

Eucalyptus stands.  

Model β0 β1 β2 R²aj Sxy Sxy (%) 

G= β0+ β1ND54 0.78*** -1.80*** - 0.81 0.09 5.76 

V = β0+ β1NDVI+ β2TM1 -24.11* 42.69*** 241.61* 0.37 2.01 13.08 

Where: G= basal area (m²); V= volume (m³); β0, β1, and β2= coefficients; R²aj= adjusted coefficient 

of determination; Sxy= residual standard error; TM= Thematic Mapper; ND= Normalized 

Difference, NDVI= Normalized Difference Vegetation Index; ***significant at 1%, and 

*significant at 10%. 

 

In the case of basal area and volume predictions using machine-learning 

algorithms, the increases in RMSEs when the predictors were excluded one by 

one from the SVM, ANN, and RF models are shown in Figure 2. The variable 

ranking by relative importance differed for each algorithm. The ND54 index, 

chosen for basal area model by the MLR, also had the greatest effect on the 

accuracy of the RF model, both for basal area and volume. The TM2 band had 

the highest relative importance for the ANN and SVM models of both basal area 

and volume. The TM1 band, selected by the MLR for volume estimation, also 

had high importance in the ANN and SVM models of volume.  
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Figure 2. Relative importance of the variables within each machine-learning 

algorithm: RF, SVM and ANN for basal area and volume. 

 

Comparisons of measured values and estimated values of basal area 

(Figure 3) showed that basal area was underestimated by the ANN model 

(Figure 3d). The model fitted using the RF algorithm produced values of basal 

area that were in closer agreement with measured values (Figure 3b). Similar 
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results were seen for the volume models, but with a slight overestimation for the 

plots with small volumes and an underestimation of the plots with high volumes. 

The model fitted using ANN algorithm did not produce estimates of volume that 

were consistent with measured values (Figure 3h). The models fitted using the 

MLR and SVM (Figures 3e and 3g) algorithms produced predicted values that 

were more closely related to the measured values than those from the ANN 

algorithm.  

Prediction and validation sets of basal area and volume were compared 

by means of a Student's t test, in order to check if they provided unbiased 

subsets of the original data (Viana et al., 2012). Average basal area (17.03 m
2 
ha

-

1
) and volume (171.10 m

3 
ha

-1
) obtained from the prediction set did not 

statistically differ from average basal area (16.45 m
2 

ha
-1

) and volume (164.92 

m
3 

ha
-1

) obtained from the validation set, considering the two-tailed Student's t 

test (Basal area: t= 0.629
ns

, df= 33, p-value= 0.533; Volume: t=0.550
ns

, df= 33, 

p-value= 0.585).  

The evaluation of spatial prediction methods, based on prediction and 

validation sets, was done by comparing the statistics presented in Equations 1 

through 4 (Table 6). The mean error (ME) should ideally be close to zero if the 

prediction method is unbiased, and the values of this parameter suggested that 

all predictions generated impartial estimates when evaluated from both 

prediction and validation sets. Both the MAE and RMSE showed that basal area 

estimates were more accurate than volume estimates for all spatial prediction 

methods. The MAE and RMSE results obtained from the validation set 

demonstrated that there were no significant differences among the MLR, RF, 

SVM, and ANN for basal area estimates. For the volume estimates, the models 

fitted by SVM had the best performance and MLR the poorest performance. 
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Figure 3. Scatter plots of measured values versus estimated values by: MLR (a) 

and (e); RF (b) and (f); SVM (c) and (g); and ANN (d) and (h) for basal area and 

volume, respectively. A 1:1 line (black, dashed) is provided for reference. 
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Table 6. Prediction methods evaluation using the prediction and validation sets 

for the Eucalyptus stands. 

Method Statistic 
Basal area error (m²) Volume error (m³) 

Prediction set Validation set Prediction set Validation set 

MLR 

ME 0.00 -0.05 0.00 -0.74 

MAE 0.07 0.09 1.56 2.08 

RMSE 0.08 0.14 1.89 2.48 

RMSE (%) 5.50 9.42 12.27 16.72 

RF 

ME 0.01 -0.03 0.08 -0.90 

MAE 0.03 0.09 0.62 1.63 

RMSE 0.04 0.14 0.73 2.21 

RMSE (%) 2.48 9.54 4.77 14.91 

SVM 

ME -0.01 -0.05 0.00 -0.66 

MAE 0.04 0.09 1.19 1.59 

RMSE 0.06 0.14 1.60 2.02 

RMSE (%) 4.14 9.39 10.41 13.58 

ANN 

ME 0.09 0.03 0.94 0.45 

MAE 0.10 0.09 1.70 1.68 

RMSE 0.14 0.13 1.98 2.05 

RMSE (%) 8.87 8.52 12.88 13.82 

Where: MLR = multiple linear regression; RF = random forest; SVM = support vector machine; 

ANN = artificial neural networks; ME = mean error; MAE = mean absolute error; RMSE = root 

mean square error. 

 

Geostatistical modelling of prediction methods errors  

The semivariogram models were selected based on RAE and SRE 

values close to zero and one, respectively (Yamamoto and Landim 2013). The 

experimental semivariograms constructed from the residuals of the basal area 

and volume prediction methods had a spatial dependence structure defined in six 

of the eight analysed situations (Figure 4 and Table 7). The volume residuals 

from MLR and ANN methods had a pure nugget effect, i.e., no spatial 



58 

 

dependence structure. This result indicated a random spatial distribution of the 

residuals in these two situations. 

 

 

Figure 4. Experimental semivariograms of residuals from: MLR (a) and (e); RF 

(b) and (f); SVM (c) and (g); and ANN (d) and (h) for basal area and volume, 

respectively.   
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Table 7. Nugget (τ
2
), sill (σ

2
), and range (ϕ) parameters for the selected 

semivariance function models for each of the variables in study. 

Variables Residual 
Selected 

Model 
τ

2
 σ

2
 ϕ (m) RAE SRE 

Basal area 

MLR Exponential 0.0016 0.0067 1350 -0.0092 1.0818 

RF Spherical 0.0004 0.0009 737 -0.0079 1.0586 

SVM Gaussian 0.0017 0.0037 1577 0.0089 0.9610 

ANN Exponential 0.0000 0.0119 1430 -0.0303 1.1393 

Volume 

MLR Exponential PNE PNE PNE PNE PNE 

RF Spherical 0.3316 0.2505 773 -0.0051 1.0258 

SVM Exponential 0.0000 2.5582 858 -0.0039 0.9958 

ANN Exponential PNE PNE PNE PNE PNE 

Where: MLR = multiple linear regression; RF = random forest; SVM = support vector machine; 

ANN = artificial neural networks; RAE = reduced average error; SRE = standard deviation of 

the reduced average error; PNE = pure nugget effect. 

 

The residuals of the spatial prediction methods that had defined spatial 

dependence structures (Figure 4) were interpolated using ordinary kriging, and 

their estimates were added to basal area and volume estimates of the respective 

spatial prediction methods. The Relative Improvement (RI) of the addition of 

basal area residual kriging by the ANN method was 25%, i.e., there was a 

reduction from 8.52% to 6.37% in the RMSE (Table 8). For the RF method, the 

RMSE increased from 9.54% to 10.08%, which corresponds to a 5.7% increase 

in the error of the basal area estimates by kriging of the residuals. For the 

volume, the addition of residual kriging improved the precision of SVM 

estimates, and reduced the precision of the RF estimates. 
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Table 8. Prediction methods with addition of the residual estimation by ordinary 

kriging using the prediction and validation sets for the Eucalyptus stands. 

Method Statistic 
Basal area error (m²) Volume error (m³) 

Prediction set Validation set Prediction set Validation set 

MLR-RK 

ME 0.00 -0.03 - - 

MAE 0.03 0.09 - - 

RMSE 0.04 0.14 - - 

RMSE (%) 2.80 9.30 - - 

RI 49.09 1.27 - - 

RF-RK 

ME 0.01 -0.05 0.00 -1.03 

MAE 0.04 0.10 0.63 1.70 

RMSE 0.05 0.15 0.77 2.26 

RMSE (%) 3.08 10.08 5.02 15.25 

RI -24.19 -5.66 -5.24 -2.28 

SVM-RK 

ME 0.01 -0.03 -0.32 -0.57 

MAE 0.05 0.10 0.80 1.22 

RMSE 0.06 0.15 1.11 1.74 

RMSE (%) 4.09 9.83 7.19 11.72 

RI 1.21 -4.69 30.93 13.70 

ANN-RK 

ME 0.02 -0.06 - - 

MAE 0.04 0.06 - - 

RMSE 0.09 0.09 - - 

RMSE (%) 5.79 6.37 - - 

RI 34.72 25.23 - - 
Where: MLR = multiple linear regression; RF = random forest; SVM = support vector machine; 

ANN = artificial neural networks; RK = residual estimation by ordinary kriging; ME = mean error; 

MAE = mean absolute error; RMSE = root mean square error; RI = Relative Improvement. 

 

Mapping of basal area and volume for Eucalyptus stands 

Basal area and volume estimates obtained by different spatial prediction 

methods (Table 9) had average values very close to each other, and were in 

agreement with the forest inventory estimates (Table 3). Only the ANN method 
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generated underestimated values for both basal area and volume, the total values 

of basal area and volume were not within the confidence interval generated by 

the forest inventory.  

 

Table 9. Statistics of basal area and volume maps estimated by spatial 

predictions methods MLR, RF, SVM, and ANN.  

Method 

Basal area (m²) Volume (m³) 

Min Max Mean 
Standard 

deviation 

Total 

estimate 
Min Max Mean 

Standard 

deviation 

Total 

estimate 

MLR 0.62 1.83 1.52 0.20 6151.9 4.51 19.99 15.30 2.30 61739.5 

MLR-RK 0.65 1.93 1.52 0.21 6141.0 - - - - - 

RF 0.96 1,89 1.51 0.17 6101.5 9.26 18.08 15.27 1.81 61600.1 

RF-RK 0.93 1.93 1.53 0.17 6166.6 9.02 18.37 15.36 1.91 61965.7 

SVM 0.88 2.12 1.57 0.18 6326.2 1.36 19.64 15.31 2.57 61760.7 

SVM-RK 0.76 2.10 1.56 0.19 6284.2 1.10 21.78 15.29 2.92 61683.8 

ANN 0.97 1.65 1.42 0.22 5715.3 8.32 15.68 13.93 2.70 56223.8 

ANN-RK 0.90 1.94 1.50 0.23 6070.3 - - - - - 

Where: Min= minimum value; Max= maximum value; MLR= multiple linear regression; RF= 

random forest; SVM= support vector machine; ANN= artificial neural networks; RK= residual 

estimation by ordinary kriging. 

 

Maps showing the spatial distribution of basal area and volume 

identified the same areas with high and low productivity, regardless of the 

spatial prediction method (Figures 5 and 6). The maps obtained by ANN had a 

smaller difference between maximum and minimum estimated values for basal 

area and volume, while the mapping obtained from the SVM models had a 

greater difference between these values. MLR and RF methods provided similar 

estimates in the basal area and volume mapping. 

The addition of residual kriging in the basal area and volume mapping 

(Figure 7) resulted in a greater difference between maximum and minimum 

estimated values in all spatial prediction methods. For ANN, residual kriging 
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resulted in estimates that were more in agreement with the field observations, 

correcting the basal area underestimation behavior for the Eucalyptus stands 

under study. However, the addition of residual kriging to the models fitted by 

RF and SVM methods did not result in significant differences in basal area and 

volume mapping, and also led to increases in estimation errors in non-sampled 

areas in the field (Table 8). 

 

 

Figure 5. Spatial distribution of the basal area in Eucalyptus stands, estimated 

by: MLR (a), RF (b), SVM (c) and ANN (d). 
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Figure 6. Spatial distribution of the volume in Eucalyptus stands, estimated by: 

MLR (a); RF (b); SVM (c); and ANN (d). 



64 

 

 

Figure 7. Spatial distribution of the basal area in Eucalyptus stands estimated 

by: MLR (a): RF (b); SVM (c); and ANN (d) with addition of the residual 

estimation by ordinary kriging; and for volume estimated by RF (e) and SVM (f) 

with addition of the residual estimation by ordinary kriging. 

 

Discussion 

Remote detection of forest canopies is complex due to the size, shape, 

and dielectric properties of its scatter elements (leaves, branches, and stems) 

(Galeana-Pizaña et al. 2014). The spatial diversity of forest canopies makes the 

relationship between forest parameters and remote sensing data a major 

challenge, although several studies have already demonstrated correlation 
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between spectral data and forest characteristics of interest (Stojanova et al. 2010, 

Viana et al. 2012, Castillo-Santiago et al. 2013, Fayad et al. 2016, Gao et al. 

2016). For instance, plantations comprised of different Eucalyptus species may 

have very similar values of basal area and volume, but have different spectral 

characteristics due to differences in spectral behaviour of the species that form 

the canopies. Also, according to Ponzoni et al. (2015), the canopy reflectance of 

older Eucalyptus plantations (between 4 and 6 years) tend to contain a greater 

contribution from green leaves and a lower contribution from shadows, the 

background, and from dry branches inside the canopies than the canopy 

reflectance of young Eucalyptus plantations (<4 years). Thus, the canopy 

reflectance of older Eucalyptus plantations generated highest correlations with 

bands of the infrared region of the electromagnetic spectrum, and, therefore, 

with vegetation indices that include these bands in their compositions (Ponzoni 

et al. 2015). These results are consistent with the best correlations found in this 

study among the infrared bands, vegetation indices derived from these bands, 

basal area, and volume. This same behaviour was observed in the studies of 

Gebreslasie et al. (2008), Canavesi et al. (2010), Berra et al. (2012), and Pacheco 

et al. (2012). 

Basal area was more strongly correlated with the spectral data because 

this variable is derived from only the diameter of the trees, which is directly 

related to size of the tree canopies, and determines the canopy reflectance 

(Ponzoni et al. 2012). On the other hand, volume is derived from the diameter, 

form factor, and height of the trees. Height estimates are obtained from 

empirical equations that add errors during the volume estimation process. This 

acts to reduce the strength of relationships between volume and variables 

obtained from remotely sensed images. The ND54 index was the spectral 

variable that had the strongest correlation with basal area (r = -0.91) and volume 

(r = -0.52). However, it was also significantly correlated with the other spectral 
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variables. During multiple linear regression analysis, the fact that two or more 

explanatory variables are highly correlated may generate multicollinearity 

problems in the fitted models, since one of the regression assumptions is that no 

linear relationship may exist between any independent variables or linear 

combinations of them (Montgomery et al., 2006). 

For the MLR method, the best volume estimation model was obtained 

from the TM1 band and the NDVI index (Table 5), yet was only able to explain 

approximately 37% of the variation in this stand attribute. Conversely, the best 

model for basal area estimation used the ND54 index as the predictor variable 

and was able to explain more than 80% of the variation in this attribute, 

confirming the explanatory power of spectral data for basal area estimation in 

Eucalyptus stands. Gebreslasie et al. (2010) assessed the suitability of both 

visible and shortwave infrared ASTER data and vegetation indices for 

estimating forest structural attributes of Eucalyptus species in southern KwaZulu 

Natal, South Africa. These authors applied a MLR using MSAVI and band 3 as 

predictor variables and were able to explain slightly more of the variation in 

basal area (R² = 0.67) than volume (R² = 0.65). Although the MLR model for 

volume does not have a high R², the spectral data can efficiently explain the 

volumetric variations in non-sampled areas in the field. In a similar study for 

Eucalyptus stands located in the southern region of Brazil, Berra et al. (2012) 

concluded that spectral data obtained from Landsat images were efficient in 

mapping the volume in the study area, even when the regression models did not 

present high coefficients of determination (R² <0.70). 

Divergence among variables that were deemed important between the 

different methods was observed with the machine-learning algorithms. For basal 

area modeling, the ND54 and NDVI indices had a higher importance value for 

RF. Statistically, these indices had high correlation values with the variable of 

interest (r=-0.91 and 0.83, respectively) and high multicollinearity (r=-0.93). 
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The ND54 index also was the variable that most contributed to the volume 

estimate by the RF method. The fact that the explanatory variables are correlated 

does not affect the performance of these algorithms. These methods do not rely 

on underlying assumptions about the data, which allows them to work with all 

available explanatory variables, without loss of information in the process of 

variables selection and reduction (Görgens et al. 2015). For the models fitted 

using ANN and SVM algorithms, the TM2 band was the most important 

predictor variable for basal area and volume. The linear correlation between this 

variable and basal area and volume is low to non-existent (r=0.15 and -0.02, 

respectively). However, this band is usually applied in vegetation vigor 

assessment (Meng et al., 2009), a characteristic that is indirectly related to 

volume and basal area, and which may explain the greater contribution of the 

TM2 band in the ANN and SVM algorithms, since trees that are more vigorous 

tend to have higher values of basal area and volume. 

The models of basal area and volume developed by the RF algorithm 

had smaller errors compared with those developed by other machine-learning 

algorithms and MLR. The performance of this algorithm has been successful in 

many modeling and remote sensing studies (Lafiti et al. 2010, Rodriguez-

Galiano et al. 2015, Wu et al. 2016). In the study by Shataee et al. (2012), 

volume prediction models developed by RF performed better than those 

developed using k-Nearest Neighbor (k-NN) and SVM. Employing ASTER 

satellite data, the relative RMSE obtained for all three volume models was 

higher than for the models developed in our study: 28.54% for k-NN, 25.86% 

for SVM, and 26.86% for RF, and only the RF algorithm produced unbiased 

volume estimations. For basal area, RF produced models with lower RMSE 

(18.39%) when compared with SVM (RMSE = 19.35%) and k-NN (RMSE = 

20.20%); however, only k-NN was able to generate unbiased estimation 

compared with the other two algorithms used.  
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One of the positive features of RF is that it achieves satisfactory 

performance even with a limited number of samples and with many independent 

variables (attributes), as in the case of this current study. It is an ensemble 

method, which combines several regression trees to generate an average 

estimate, in which different attributes are used in each tree, making the results 

take into account the information of all available attributes. Stojanova et al. 

(2010) also concluded that ensemble methods (RF) were significantly better in 

height and canopy cover modeling using remote sensing data than single- and 

multi-target regression trees. The ANN and SVM algorithms also have proven 

good performance and robustness in several studies (e.g. Shao and Lunetta 2012, 

Were et al. 2015). However, the parameterisation of these methods is laborious, 

and they are very sensitive to the variation of input parameters, with ANN being 

more sensitive than other methods (Rodriguez-Galiano et al. 2015). This same 

behaviour was observed in this study, where the use of a restricted dataset by 

ANN resulted in estimates that were not compatible with the forest inventory 

estimates (Tables 3 and 9). 

The addition of residual kriging in spatial prediction methods did not 

necessarily result in relative improvements in the estimation of these methods. In 

the case of MLR and ANN methods, residual kriging contributed to better 

accuracy of the basal area estimates. These results are consistent with the results 

of Dai et al. (2014), who reported that the combination of the residual kriging 

with artificial neural networks provides an improvement in the estimate accuracy 

of the variables of interest. The combination of MLR with residual kriging also 

provided improvements in estimates in the studies of Viana et al. (2012), 

Castillo-Santiago et al. (2013), and Galeana-Pizaña et al. (2014). For basal area 

and volume estimation, the addition of residual kriging in the RF and SVM 

methods resulted in a lower precision of the estimates. Hybrid methods are 

advantagous in the ability to use spatial information (ordinary kriging of 
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residuals) and non-spatial information (multiple linear regression analysis and 

machine-learning algorithms). However, in some situations, hybrid methods 

provide less accurate estimates in regions where the data collected in the field 

are sparse (Palmer et al., 2009).  

The high growth rate of Eucalyptus stands in Brazil reinforces the 

importance of robust methods that consider auxiliary information in the process 

of estimating variables of interest, such as basal area and volume. The 

methodologies presented here are powerful tools for estimating basal area and 

volume from spectral data obtained from Landsat 5 TM or from other 

multispectral optical sensors. According to Görgens et al. (2015), machine-

learning algorithms can continuously learn from new data, and keep all the 

accumulated knowledge of previous datasets. This fact allows the 

implementation of these algorithms in other situations where only limited 

amounts of data are available. The use of all auxiliary variables in the estimation 

process is another advantage over traditional regression methods, since machine-

learning algorithms are not restricted by correlation between input variables, 

thus avoiding the loss of important information in the estimation process of the 

variable of interest. Nevertheless, these methods have as disadvantage the lack 

of transparency of the resulting models, so an alternative to overcome this 

obstacle is the evaluation of the relative importance of the explanatory variables. 

Furthermore, the causal relation between inputs and outputs of the estimation 

process is not clear, which implies a limited biological interpretation (Aertsen et 

al., 2010, Özçelik et al., 2013). 

The results from the current study do need to be interpreted cautiously, 

as they are limited to a homogenous and relatively small study area. While this 

work uses a small number of plots, it represents the sampling intensity adopted 

by most Brazilian forestry companies, i.e., one plot (usually 200–500 m² in size) 

for each 10 hectares of Eucalyptus plantation (Raimundo et al., 2017, Scolforo et 
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al., 2016) and the results from this research showcase the importance of using 

remotely sensed data and robust prediction methods for basal area and volume 

estimation. The data used here were also from a relatively old sensor, Landsat 5 

TM. A study by Fassnacht et al. (2014) concluded that predictor data (sensor) 

type is the most important factor for the accuracy of biomass estimates, and that 

the prediction method had a substantial effect on accuracy and was generally 

more important than the sample size. Fassnacht et al. (2014) also suggested that 

choosing the appropriate statistical method may be more effective than obtaining 

additional field data for obtaining good biomass estimates. 

Considering the cost of improving accuracy of timber production 

estimates by field measurements in Eucalyptus stands, it seems sensible to invest 

in further studies that focus on more test sites and a wider range of sensor 

systems (particularly RADAR and LIDAR). This would further increase our 

understanding of the role of the statistical model set-up in remote sensing-based 

estimates of forest variables in Eucalyptus stands. Further studies could also 

investigate whether other prediction methods, such as nonlinear regression or 

Partial least squares regression (PLSR) approaches alter our findings. The 

integration of additional predictors (e.g., topographic information or climate 

variables) would be a further possible extension of our work. 

 

Conclusions 

Machine-learning algorithms, particularly the random forest (RF) and 

Support Vector Machine (SVM) algorithms, were able to develop models that 

estimate basal area and volume in Eucalyptus stands using spectral data 

collected from Landsat 5 TM images. The Artificial Neural Networks (ANN) 

method did not perform well in this context, in part due to the limited data 

availability. 
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Random forest was the best method of spatial prediction and mapping of 

basal area and volume in Eucalyptus stands in Minas Gerais state. However, due 

to the close performance to the SVM and multiple linear regression methods, we 

propose that both methods should be tested and then, the best result applied for 

spatial prediction of basal area and volume in other regions with Eucalyptus 

stands. The approaches used in this study provide a frame work for integrating 

field and multispectral data, highlighting methods that greatly improve spatial 

prediction of basal area and volume estimation in Eucalyptus stands. Although 

the sensor TM of Landsat satellites is no longer operational, the concepts 

presented in this study are expected to be consistent regardless of the sensor. 

Thus, the approach used in this study can be more broadly applied to basal area 

and volume estimation in Eucalyptus stands using the new optical sensors such 

as Landsat 8 OLI and Sentinel-2. 

The combination of spatial prediction methods with residual kriging 

should be used with caution, since the relative improvement of spatial prediction 

accuracy of basal area and volume did not occur in all methods, and there is not 

always a spatial dependency structure in the residuals of a spatial prediction 

method.  

 

List of abbreviations 

G= basal area; V= volume; MLR= multiple linear regression; RF= random 

forest; SVM= support vector machine; ANN= artificial neural networks; GDP= 

gross domestic product; GIS= geographical information systems; GPS= global 

positioning systems; MLA= machine learning algorithms; USGS= United States 

Geological Survey; TM= thematic mapper, ND= normalized difference, NDVI= 

normalized difference vegetation index; SAVI= soil-adjusted vegetation index; 

MSAVI= modified soil-adjusted vegetation index; EVI= enhanced vegetation 

Index; GEMI= global environment monitoring index; AIC= akaike information 



72 

 

criterion; VIF= variance inflation factor; RBF= radial basis function; SMO= 

sequential minimal optimization; RAE= reduced average error; SRE= standard 

deviation of the reduced average error; Sxy= residual standard error; R²aj= 

adjusted coefficient of determination; ME= mean error; MAE= mean absolute 

error; RMSE= root mean square error; RI= Relative Improvement; PNE= pure 

nugget effect; RK= residual estimation by ordinary kriging. 
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Abstract: In this study, we tested the effectiveness of stand age, multispectral 

optical imagery obtained from the Landsat 8 Operational Land Imager (OLI), 

synthetic aperture radar (SAR) data acquired by the Sentinel-1B satellite, and 

digital terrain attributes derived from a digital elevation model (DEM), in 

estimating forest volume in 351 plots in a 1,498 ha Eucalyptus plantation in 

northern Minas Gerais state, Brazil. A Random Forest (RF) machine learning 

algorithm was used following Principal Component Analysis (PCA) of various 

data combinations, including multispectral and SAR texture variables and DEM-

based geomorphometric derivatives. Using multispectral, SAR or DEM 

variables alone (i.e., Experiments (ii)-(iv)) did not provide accurate estimates of 

volume (RMSE (Root Mean Square Error) > 32 m³ ha
-1

) compared to 

predictions based on age since planting of Eucalyptus stands (Experiment (i)). 

However, when these dataset were individually combined with stand age (i.e., 

Experiments (v)-(vii)), the RF models resulted in better volume estimates than 

those obtained when using the individual multispectral, SAR and DEM datasets 

(RMSE < 28 m³ ha
-1

). Furthermore, a model that integrated the selected 

variables of these data with stand age (Experiment (viii)) improved volume 

estimation significantly (RMSE = 22.33 m³ ha
-1

). The large and increasing area 

of Eucalyptus forest plantations in Brazil and elsewhere suggests that this new 

approach to volume estimation has potential to support Eucalyptus plantation 

monitoring and forest management practices. 

Keywords: Landsat 8 OLI; Sentinel-1B; terrain attributes; Random Forest; forest 

management. 

 

1. Introduction 

Forest plantations cover approximately 277 million hectares globally 

and have significant capacity to store carbon during growth and in the form of 

durable forest products after harvest (Payn et al. 2015). In Brazil, Eucalyptus 
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trees are widely planted in part due to fast growth and successful adaptation of 

Eucalyptus cultures (Raimundo et al. 2017; Scolforo et al. 2017), and with 

recent large-scale afforestation and reforestation efforts, have now expanded 

rapidly to cover more than 5.6 million hectares (Ibá, 2016). These plantation 

forests support multiple uses and are estimated to have the capacity to absorb 

approximately 1.2 billion tons of carbon dioxide annually.  

Monitoring of Eucalyptus forest growth in Brazilian forest plantations is 

conducted through annual field-based forest inventories (Raimundo et al. 2017). 

Forest volume is an important measurement in such inventories to support 

analysis of wood products and biophysical processes related to forest dynamics 

(Gao et al. 2016; Dube et al. 2017). However, field-based forest inventory 

measurements are expensive, time consuming, and labour intensive. Age since 

planting date is a simple mechanistic way to obtain a general indication of 

plantation growth and volume in Eucalyptus plantations. However, recent 

studies have suggested that remotely-sensed data can supplement this type of 

plot-based age estimate of forest volume with spatially-explicit information 

(Gama, dos Santos, and Mura 2010, 2016; Gebreslasie, Ahmed, and van Aardt 

2010, 2011; Baghdadi et al. 2014, 2015; Dube and Mutanga 2015, 2016). For 

example, Gebreslasie, Ahmed, and van Aardt (2011) and Ismail et al. (2015) in 

South Africa and Baghdadi et al. (2015) in Brazil reported an accuracy increase 

in age-based forest structural attribute estimations in Eucalyptus plantations 

incorporating ASTER, SPOT4 and ALOS/PALSAR data, respectively. High 

spatial resolution sensors, light detection and ranging (LIDAR) and unmanned 

aerial vehicle (UAV) data have shown great potential for improving forest 

volume estimates (e.g., Goodbody et al. 2017, Ota et al. 2017, Tompalski et al. 

2018). The recent paper by Shinzato et al. (2017) provides the spatial 

distribution of volume in Eucalyptus plantations using high resolution 

multispectral images and LIDAR data with a RMSE of 17.43 m
3 

ha
−1

. Using a 



86 

 

nonlinear mixed-effect model and LIDAR data, Packalén et al. (2011) obtained a 

volume estimate accuracy with RMSE between 26 and 45 m
3 
ha

−1
 for Eucalyptus 

stands in Bahia, Brazil. On the other hand, the limited availability and high 

acquisition cost of such data continue to restrict widespread adoption of these 

technologies in large area applications (McRoberts, Gobakken, and Næsset 

2012; Racine et al. 2014; Ota et al. 2017).  

A second option is to use freely available public archives of 

multispectral satellite imagery and synthetic aperture radar (SAR) data to 

supplement the simple volume-age relationships and in prediction of other forest 

parameters of interest (e.g., leaf area index (LAI), canopy cover) (Ismail et al. 

2015; Gao et al. 2016; Gama, dos Santos, and Mura 2016). Satellite 

multispectral optical sensor data have been used to distinguish the basic 

distribution of green vegetation related to photosynthesis of plants (Roy et al. 

2014). However, accurate forest volume estimation using such imagery alone 

has proven difficult to achieve due to spectral saturation problems in dense 

forests (Lu et al. 2014). Related research has shown that satellite SAR sensor 

data, which are less influenced by clouds and atmospheric aerosols, are sensitive 

to plant structure and capable of penetrating vegetation (Torres et al. 2012). 

Thus, an optimal strategy is to use available multispectral and SAR data together 

to address Eucalyptus plantation forest stand volume estimates and long-term 

monitoring needs (Ismail et al. 2015; Aslan et al. 2016; Shao and Zhang 2016; 

Zhao et al. 2016). 

The integration of multispectral optical and SAR sensor data has also 

been reported with digital elevation model (DEM) data to represent terrain 

conditions or climate variables directly related to forest growth (Dube et al. 

2017; López-Sánchez et al. 2017; Scolforo et al. 2017). DEMs are widely 

available at high spatial resolutions and vertical accuracies, and can be processed 

for the generation of a wide range of geomorphometric variables, such as slope, 
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aspect, incidence (or insolation), and hydrological and topographical indices 

(e.g., slope position, wetness index) (Hengl and Reuter 2009). However, there 

remains a paucity of good methodological examples and demonstrations of the 

accuracy that can be obtained by integrating such DEM-based geomorphometric 

data with optical and SAR remote sensing methods in fast-growing sub-tropical 

Eucalyptus plantations.   

In this study, we tested the effectiveness of integrating stand age, 

multispectral optical data (Landsat 8 OLI), SAR (Sentinel-1B) remote sensing 

data, and digital terrain attributes or geomorphometrics derived from a DEM to 

improve the estimation accuracy and mapping of volume in Eucalyptus 

plantations in Brazil. To the best of our knowledge, no study has been carried 

out to estimate volume of Eucalyptus plantations based on integration of the 

recently launched Sentinel-1B SAR, Landsat-8 OLI, and digital terrain variables. 

Initially, variables obtained from the three different digital datasets (i.e., 

multispectral optical data, SAR data, and terrain attributes) were used separately 

to estimate forest volume measured in a standard Eucalyptus plantation plot-

based forest inventory protocol for this region. We used Principal Component 

Analysis (PCA) to reduce the large number of digital variables to fewer, 

uncorrelated components that explained most of the original dataset variance. 

Then, stand age was combined with the best multispectral optical, SAR and 

digital terrain variables in 246 training areas to predict volume in 105 validation 

plots over three years. The input variables were ranked using the recursive 

Variable Importance (VI) method within the Random Forest (RF) machine 

learning algorithm, and the final estimated forest volumes were compared to the 

field-observations of volume in the independent forest inventory sample. In this 

paper, we interpret the various models and compare the best overall model with 

the results obtained when using each dataset alone. A spatial interpretation of the 
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patterns of Eucalyptus plantation volume produced using the best RF results is 

provided for the final map analysis. 

 

2. Background to Eucalyptus plantation volume estimation using remote 

sensing data 

Estimates of Eucalyptus plantation volume using multi-source remote 

sensing and DEM data in comparison to field observations have been reported 

using a variety of input variables and methods. For example: 

 

i. Multispectral and SAR images: Ismail et al. (2015) used ALOS PALSAR 

backscatter and SPOT 4 multispectral optical data to predict volume in 

Eucalyptus plantations in Zululand, South Africa. Stand age – measured as 

an annual increment since planting date – was used as an independent 

variable in a regression model to predict volume, with one optical band 

(short-wave infrared or SWIR) and one SAR band (HV cross-polarization 

backscatter). The best model produced a RMSE of 31.71 m³ ha
-1

, which was 

considered appropriate for operational forest management in this region. 

These results confirmed earlier work that suggested that, since Eucalyptus 

plantations are typically a single species monoculture, and the undergrowth 

(shrubs and small trees) is sparse, a high proportion of tree stem-scattering 

was produced and was represented in the SAR image dataset (Gama, dos 

Santos, and Mura 2016). 

ii. Image texture: The use of texture measures derived from multispectral 

optical images to improve volume estimates in Eucalyptus plantations has 

been documented (Gebreslasie, Ahmed, and van Aardt 2011; Dube and 

Mutanga 2015).  The general principle is that image texture derivatives can 

simplify and define complex forest canopy structures even in closed 

canopies, thus reducing saturation effects (Sarker and Nichol 2011). 
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Recently, Dube and Mutanga (2015) demonstrated that certain small-

window (or high frequency) texture derivatives from Landsat 8 OLI data 

helped improve aboveground biomass estimation in both Eucalyptus and 

Pinus plantations when compared to the use of multispectral reflectance data 

alone or vegetation indices. The use of SAR image texture in Eucalyptus 

plantation volume estimates has not yet been reported, although an earlier 

forest biomass estimation study with integrated multispectral and SAR data 

showed that textures were effective (Cutler et al. 2012). 

iii. Digital terrain attributes: Spatial and temporal variations of Eucalyptus 

plantation growth are strongly affected by topography and climate 

conditions. In general, topography controls the hydrologic dynamics of 

catchments, nutrient and soil conditions, and climate influences growth 

through variability in incoming solar radiation, soil moisture, and 

temperature (Adams, Barnard, and Loomis 2014; Dube et al. 2017; H. F. 

Scolforo et al. 2017). In one recent study, Dube and Mutanga (2016) 

improved aboveground biomass prediction accuracy (R²= 80% and 

RMSE=19.65 t ha
-1

) by integrating environmental variables (rainfall and 

temperature) and five DEM-based geomorphometric variables (slope, 

aspect, topographic wetness index, elevation, and insolation) with a 

WorldView-2 multispectral image of Eucalyptus and Pinus forest 

plantations in Umgeni Catchment, South Africa.  

 

Many of these studies used regression techniques or machine learning 

algorithms in forest volume or biomass model development. The RF algorithm 

is a nonlinear and non-parametric ensemble decision-tree method (Breiman 

2001). Such models of forest attribute estimation (Belgiu and Drăgu 2016; Gao 

et al. 2016; López-Serrano et al. 2016; Wu et al. 2016) often outperform 

alternative methods, such as k-Nearest Neighbor (kNN), Support Vector 
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Machine (SVM), Back Propagation Neural Networks (BPNN), and Stepwise 

Multiple Linear Regression (LMSTEP).  

Another key feature of multi-source remote sensing forest volume 

estimation work is the widespread use of data dimensionality reduction methods; 

typically, satellite sensor multispectral and SAR imagery, texture derivatives, 

and DEM-related datasets will enable the production of a very large number of 

predictive variables. Many of these variables will be correlated or redundant, 

and multiple variables can overwhelm even the most robust statistical or non-

parametric algorithm when the sample sizes are relatively small (not rare in 

studies relying on plot-based field forest inventory measurements). One 

common strategy is to employ a data reduction tool, such as Principal 

Components Analysis (PCA), prior to model development (Fayad et al. 2014; 

Lee et al. 2015; Lu et al. 2014; Ng 2017). 

 

3. Study area 

This study was conducted in a 1,498 ha privately-managed Eucalyptus 

plantation in Diamantina municipality, northern Minas Gerais state, Brazil 

(Figure 1). The region experiences humid sub-tropical climatic conditions, 

corresponding to Köppen’s climatic type Cwb, with the rainy season occurring 

between the months of October and March and mean annual rainfall of 1,468 

mm. Mean daily temperatures during the hottest month typically do not exceed 

22°C (Alvares et al. 2013). Elevations range between 700 m and 1100 m above-

mean-sea-level. Soils are relatively uniform and predominately Cambisols and 

Latosols. The Eucalyptus plantation was established between November 2010 

and October 2012, using clone species (E. urophylla x E. grandis), which 

typically leads to uniform crown and tree density conditions. Eucalyptus trees 

are harvested every 5–7 years. The stand age is a relatively simple metric to 

determine with planting and field data collection information. The plantation 
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was established at approximately 1111 trees per hectare with initial spacing of 

3.6 x 2.5 m. Intensive soil preparation and weed control measures are practised. 

Crown closure occurs quickly within the first 18 months following plantation 

establishment.  

 

 

Figure 1. Location of the study area in northern Minas Gerais state, Brazil. 

 

4. Methods 

Field measurements  

Field data collection in 351 plots across the Eucalyptus plantation using 

a standard continuous forest inventory (CFI) method occurred on August 2015, 

June 2016, and June 2017 (Figure 2). In the first year of Eucalyptus plantation 

development, field measurements determined survival and mortality within the 

stands, but detailed forest inventory observations were not made. Subsequent 

annual field inventory was based on the 351 sample plots distributed 

systematically and located in the field using survey-grade real time kinetic 

(RTK) GPS. A plot size of 25 m × 20 m (500 m²) was used. Within each plot, 
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tree diameter at breast height (DBH) of all stems and the total height of the first 

15 trees with normal stems (without bifurcation or any other defect) were 

measured. From the information collected in the plots, estimates of stand volume 

(in m
3 

ha
-1

) were estimated using standard forest allometric equations developed 

for this region. The individual volume equations were based on DBH and total 

height, fitted for each measurement year and DBH class. All fitted equations 

showed high coefficient of determination (R² > 97%) and low residual standard 

error (Sxy < 0.05 m³). The plot-based field inventory Eucalyptus forest plantation 

volume for 2015-2017 is summarized in Table 1. 

 

 
Figure 2. Eucalyptus plantation: (a) Distribution of 351 plots used in field 

inventory and a small 6.25 km
2
 subarea identified in the southeast to show the 

multi-source remote sensing and digital terrain data used; (b) Landsat 8 OLI NIR 

band enhancement in greyscale of the subarea, (c) Sentinel-1B C-band SAR VH 

polarization enhancement in greyscale, and (d) ALOS PALSAR DEM with 

relative elevation values on a 12.5 m grid. 
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Table 1. Eucalyptus forest plantation description and volume estimates obtained 

from forest inventory field data collection in 351 plots over three years. 

Field data  

collection Number  

of plots 

Age (Years) Volume (m
3
 ha

-1
) 

Month Year Min Max Min Max Mean StdDev  

August 2015 137 2.90 4.80 85.55 253.49 146.26 33.86 

June 2016 117 3.70 5.60 111.81 277.22 181.13 35.33 

June 2017 97 4.70 6.60 131.28 338.57 211.49 38.99 

Where: Min = minimum; Max = maximum; StdDev = standard deviation. 

 

Remote sensing data collection and preprocessing 

Landsat 8 OLI multispectral imagery, Sentinel-1B SAR data, and ALOS 

PALSAR DEM data were acquired for this research. The selected Landsat 8 OLI 

satellite scenes (Path 218 and Row 72) covering the study area were acquired on 

dates that most closely coincided with the field measurement dates (i.e., June 12, 

2015, July 16, 2016, and June 01, 2017, respectively), and were relatively cloud-

free and without obvious radiometric issues. These scenes were obtained from 

the USGS database (United States Geological Survey) as Level 1 Terrain 

Corrected (L1T) product with a 30 m geometric resolution, less than one-half 

pixel RMSE locational error, and the following bands: coastal aerosol (C, 0.43–

0.45 μm), blue (B, 0.45–0.51 μm), green (G, 0.53–0.59 μm), red (R, 0.64–0.67 

μm), near infrared (NIR, 0.85–0.88 μm), shortwave infrared-1 (SWIR1, 1.57–

1.65 μm), shortwave infrared-2 (SWIR2, 2.11–2.29 μm). In addition to the 

spectral bands, six multispectral indices were employed (le Maire et al. 2011; 

Shao and Zhang 2016; López-Sánchez et al. 2017; Riihimäki, Heiskanen, and 

Luoto 2017; Vaglio et al. 2017), including: Normalized Difference Vegetation 

Index (NDVI), Enhanced Vegetation Index (EVI), Simple Ratio (SR), Soil-

Adjusted Vegetation Index (SAVI), Modified Soil-Adjusted Vegetation Index 

(MSAVI) and Normalized Difference Moisture Index (NDMI). 
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Sentinel-1B SAR scenes were selected for this study with acquisition 

dates close to the Landsat scene acquisition dates (i.e., June 13, 2015, July 27, 

2016, and June 8, 2017, respectively). We used Ground Range Detected (GRD) 

Level-1 data acquired in interferometric wide swath (IW) mode with dual 

vertical-vertical (VV) and vertical horizontal (VH) polarization. These SAR data 

were calibrated, radiometrically- and geometrically-corrected and filtered using 

the Sentinel-1 Toolbox implemented in SNAP (Sentinel Application Platform) 

and have a spatial resolution of 10 m. Additionally, we calculated three SAR 

indices using the available VV and VH polarizations: i) simple polarization 

ratios VH/VV and VV/VH, and ii) polarization averaging (VH-VV)/2 (Omar, 

Misman, and Kassim 2017). 

Terrain attributes derived from the DEM (ALOS PALSAR) with a 

spatial resolution of 12.5 m were used to quantify the topographic conditions in 

the plantation study area. Basic terrain attributes included general 

geomorphometric variables of elevation, slope, aspect (sin and cosine), cross-

sectional and longitudinal curvatures (Hengl and Reuter 2009). In addition, 

specific geomorphometrics were computed to characterize local topographic and 

hydrological variability (Adams, Barnard, and Loomis 2014). First, convergence 

index, flow accumulations, channel network base level, vertical distance to 

channel network, valley depth, and relative slope position provided insight into 

site-specific water-, gravity- and wind-field conditions. Second, direct 

insolation, diffuse insolation, analytical hillshade (also known as shaded relief or 

incidence value), and the Topographic Wetness Index (TWI) metric were 

computed to represent the variability associated with mean solar-field conditions 

(Mohamedou, Tokola, and Eerikäinen 2017). All terrain attributes were 

calculated using the SAGA GIS software package (v. 5.0.0). Prior to calculation 

of the selected terrain attributes, the DEM was preprocessed with a standard 

gap/sink-filling error detection and noise removal routine. 
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Extraction of textural images from Landsat 8 OLI and Sentinel-1B SAR data 

The Grey Level Co-occurrence Matrix (GLCM) statistical texture 

approach (Haralick, Shanmugam, and Dinstein 1973) was used to generate 

texture images (Lu et al. 2014) from the green and near infrared Landsat bands, 

and the VV and VH Sentinel-1B SAR backscatter data. These images appeared 

visually to contain high image contrast in the Eucalyptus plantations of interest. 

Eight GLCM texture features were then generated with 64-bit quantization, over 

small windows (3 x 3), and averaged for directional texture: mean (MEA), 

variance (VAR), homogeneity (HOM), contrast (CON), dissimilarity (DIS), 

entropy (ENT), second moment (2M), and correlation (COR). A small window 

size was used in order to preserve high frequency spatial information, which was 

shown in earlier work to decrease when using larger windows as a result of over-

smoothing of fine-scale textural variations (Franklin, Wulder, and Lavigne 

1996). Recent research has also documented improved performance of small 

window sizes when applied to forest attribute estimation in Eucalyptus 

plantations (Dube and Mutanga 2015). Note that the intent was not a test of all 

possible texture methods and spatial operators, but rather an initial step using 

statistical textures to augment the spectral domain of the multi-source remotely 

sensed imagery with high frequency spatial information (López-Serrano et al. 

2016). The goal was to characterize the fine-scale spatial heterogeneity of 

Eucalyptus forest plantation structures. Texture analysis was performed using 

software ENVI Version 4.7 (Exelis Visual Information Solutions, Boulder, 

Colorado). 

 

Principal Component Analysis (PCA) of predictive variables 

Principal Component Analysis (PCA), a commonly-used and effective 

data dimensionality reduction technique (Lee et al. 2015; Maack et al. 2015; Ng 

2017), was applied in this study. All data were normalized to reduce potential 
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scaling issues due to differing measurement units. Seven multispectral bands, six 

multispectral indices, sixteen optical texture derivatives, five SAR variables 

(two backscatter coefficients and three image-derived indices) and sixteen SAR 

texture derivatives were processed separately to create orthogonal components. 

We then named those components based on the variables with the highest 

individual component loadings. We selected PCs that together represented no 

less than 98% of the data variance in each dataset. In total, 16 components were 

generated to represent the variance in the Landsat 8 OLI multispectral bands 

(PC1-4), multispectral vegetation indices (PC1-3) and optical textures (PC1-9); 

and 13 components represented the SAR backscatter and derived SAR indices 

(PC1-2) and SAR textures (PC1-11). The final sets of PCs were used as input 

variables with the digital terrain variables in the volume estimation procedures 

described in the next section. 

 

Random Forest regression algorithm 

The Random Forest (RF) (Breiman 2001) machine learning algorithm is 

well suited for analysis of complex variable datasets in forestry and multi-source 

remote sensing (Dube et al. 2015; Gao et al. 2016; Novelli et al. 2016; Franklin 

and Ahmed 2017; Zhang et al. 2018). While more complex machine learning 

routines are increasingly available, RF is often recommended as a good first 

choice for use in proof-of-concept analysis, such as that undertaken here 

(Daroczi 2015). In this study, we used 300 decision trees in each RF 

implementation following preliminary tests of model performance. This number 

of decision trees ensured that every plot observation was predicted at least 

several times for each model output. The number of variables randomly sampled 

at each split was equal to the square root of the number of variables. Finally, the 

total field sample of plots (351) was divided randomly into 70% (246 plots) and 

30% (105 plots) for training and validation of the RF models, respectively. 
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We applied a backward stepwise predictor selection approach for each 

of eight experiments described in the next section to ensure that only predictor 

variables were selected that decreased the overall model uncertainties. 

Accordingly, in each run, 20% of the lower importance predictors were removed 

and the resulting Root Mean Square Error (RMSE) based on comparisons to the 

field inventory calculations in the 105 validation plots of volume was assessed. 

Initial tests revealed that this method produced the best overall predictive 

accuracy and allowed us to simplify the modelling process by identifying the 

minimum number of predictors to offer the best predictive accuracy (see also 

Ismail and Mutanga 2010). The RF Variable Importance metric was computed, 

based on recursive substitution, enabling the most important variables in each 

model run to be interpreted based on the percentage increase of the mean square 

error (IncMSE) resulting when that variable was removed from the prediction. 

These analyses were performed using the R software package (R Core Team, 

2017). 

 

RF Experiments 

Figure 3 shows that volume of Eucalyptus stands increases with the 

stand age and is highly variable. This relationship and variability is of interest in 

this study.  

Eight Random Forest experiments were conducted to predict plantation 

volume using the predictive variables extracted from the three different digital 

datasets: the developed PCs of Landsat 8 OLI and Sentinel-1B and the digital 

terrain attributes (Table 2). The first Experiment (i) used stand age alone to 

predict volume, and improvement of this simple decision-tree relationship was 

expected based on the addition of the new remote sensing and terrain 

explanatory variables. 
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Figure 3. Eucalyptus plantation volume as a function of stand age measured in 

the field. 

 

Accuracy assessment 

The accuracies of predicted Eucalyptus plantation forest volume using 

the eight developed RF models were evaluated using adjusted coefficient of 

determination (R²) and Root Mean Square Error (RMSE) in m
3
 ha

-1
 calculated 

based on field-based inventory volume estimates with the validation data (105 

plots).  In addition, we calculated the relative RMSE (RMSEr) expressed as 

percentage, as described in Equations (1) and (2): 

RMSE=√∑
(Xi - X̂i)

n

2
n
i=1                                                                                           (1) 

RMSEr= 
RMSE

X̅
×100                                                                                             (2) 

where n is the number of plots in the dataset; X̂i is the estimated value of 

volume; Xi is the observed value of volume in the validation dataset; and X̅ is the 

mean of the validation dataset. Finally, we mapped the estimated Eucalyptus 

plantation forest volume for the area of the plantation.  



 

 

9
9
 

Table 2. Experimental design for Random Forest models using various combinations of stand age, Landsat 8 OLI, 

Sentinel-1B, and ALOS PALSAR DEM-derived predictor variables for Eucalyptus forest plantation volume estimation. 

Data type Data source Details Experiment 

Stand age Forest Inventory 
Independently determined based on plantation records indicating 

the dates of tree planting and field measurement dates 
(i) 

Landsat 8 OLI 

multispectral variables  
Landsat 8 OLI 

Multispectral bands (PC1-4), multispectral indices (PC1-3) and 

textures (PC1-9)  
(ii) 

Sentinel-1B SAR variables  Sentinel-1B SAR 
Backscatter coefficients and image-derived indices (PC1-2) and 

textures (PC1-11)  
(iii) 

Digital terrain variables ALOS PALSAR DEM 

Elevation, slope, aspect (sin and cosine), cross-sectional 

curvature, longitudinal curvature, convergence index, flow 

accumulation, channel network base level, vertical distance to 

channel network, valley depth, relative slope position, direct 

insolation, diffuse insolation, analytical hillshade, and TWI 

(iv) 

Age + Landsat 8 OLI 

multispectral selected 

variables 

Forest Inventory + Landsat 8 

OLI 

Stand age plus the best multispectral image predictors (PCs) as 

indicated by the VI measure in Experiment (ii) 
(v) 

Age + SAR selected 

variables 

Forest Inventory + Sentinel-1B 

SAR 

Stand age plus the best SAR image predictors (PCs) as indicated 

by the VI measure in Experiment (iii) 
(vi) 

Age + digital terrain 

selected attributes 

Forest Inventory + ALOS 

PALSAR DEM 

Stand age plus the best digital terrain attributes as indicated by 

the VI measure in Experiment (iv) 
(vii) 

Age + Landsat 8 OLI 

multispectral + Sentinel-1B 

SAR + digital terrain 

selected variables  

Forest Inventory + Landsat 8 

OLI +  

Sentinel-1B SAR + ALOS 

PALSAR DEM 

Stand age plus the best multispectral and SAR image predictors 

(PCs) and digital terrain attributes as determined in the preceding 

steps 

(viii) 

Where: TWI= Topographic Wetness Index, PC= Principal Component, VI= Variable Importance; DEM= Digital Elevation Model, OLI= Operational Land Imager, 

SAR= Synthetic Aperture Radar. 
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5. Results and Discussion 

Table 3 shows the adjusted coefficient of determination (R²), RMSE and 

RMSEr obtained using the eight RF models developed using the 246 training 

plots and then applied to the validation plot data (105). 

 

Table 3. Performance of the RF volume models in Eucalyptus plantation based 

on different predictor group combinations using 351 plots separated into 246 

training (RF model development) and 105 validation samples (RF model 

assessment). 

Experiment Predictor Data Type R² (%) RMSE (m
3
 ha

-1
) RMSEr (%) 

(i) Stand age  49.08 30.98 17.87 

(ii) 

Landsat 8 OLI 

Multispectral 

variables  

41.05 32.06 18.49 

(iii) 
Sentinel-1B SAR 

variables  
33.88 34.54 19.92 

(iv) 
Digital terrain 

variables 
9.70 39.77 22.94 

(v) 

Age + Landsat 8 OLI 

multispectral 

variables  

64.04 25.10 14.48 

(vi) 
Age + Sentinel-1B 

SAR variables 
54.65 27.84 16.05 

(vii) 
Age + digital terrain 

variables  
69.19 22.40 12.92 

(viii) 

Age + Landsat 8 OLI 

Multispectral + 

Sentinel-1B SAR + 

digital terrain 

variables  

71.43 22.33 12.88 

Where: R² = adjusted coefficient of determination; RMSE = root mean square error and RMSEr = 

relative root mean square error 
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As expected, stand age predicted Eucalyptus plantation forest volume in 

these plots with approximately 49% accuracy and a relatively low RMSE (30.98 

m
3
 ha

-1
) (Experiment (i)). Using RF Variable Importance in this study, stand age 

was always selected as the most important variable. Le Marie et al. (2011) and 

Baghdadi et al. (2015) also found that stand age was the most important variable 

used in their volume estimation models. In those studies, age alone was able to 

explain more than 80% of volume variability in highly productive Eucalyptus 

plantations in São Paulo State, Brazil. The stand age influences the rate of 

photosynthetic activity and the growth rate of Eucalyptus trees, mainly due to 

the accelerated rate of growth of these trees. These results confirm earlier 

findings that have shown stand age to be a good initial estimator of volume in 

Eucalyptus plantations (Ismail et al. 2015; Gebreslasie, Ahmed, and van Aardt 

2010; Dube et al. 2017). However, the large amount of variation not explained 

by age, and the resulting RMSE (30.98 m³ ha
-1

) for such plantation volume 

estimates, confirmed the need to consider a more sophisticated approach 

employing more accurate and detailed field or remotely-sensed data. Although 

stand age was able to predict the average volume per development phase of trees 

in the Eucalyptus plantation (i.e., age since tree planting), stand age was not 

sensitive to differences in volume expressed spatially and potentially caused by 

mortality, growth on less or high productive sites, potential nutrient/moisture 

limitations or pest-affected areas.  

In subsequent models, based on the use of Landsat 8 OLI multispectral 

data, Sentinel-1B SAR image data, and terrain attributes alone, the estimates of 

volume were generally poor. In each case, the RMSE > 32 m
3
 ha

-1
 and the R² < 

41%. Employing eight Hyperion EO-1 (total bands = 220)-derived vegetation 

indices and multiple-linear regression models to estimate Eucalyptus stand 

volume in Brazil, Canavesi, Ponzoni, and Valeriano (2010) obtained a RMSE 

equal to 43.73 m
3
 ha

-1
, a higher value than the RMSE obtained in our study 
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using Landsat multispectral optical data alone. Gama, dos Santos, and Mura 

(2010) used airborne interferometric and polarimetric SAR data in X and P 

bands to estimate volume of Eucalyptus plantations, and obtained RMSE=33.56 

m
3
 ha

-1
. The RMSE obtained by these authors is similar to our results using SAR 

data to estimate volume. In our study, the least accurate model performance was 

reported when using the terrain attributes alone as predictor variables 

(RMSE=39.77 m
3
 ha

-1
, and R² = 9.70%). The use of Sentinel-1B SAR variables 

alone led to higher RMSE and lower variance explained than the use of Landsat 

8 OLI optical data alone; but both of these remote sensing datasets outperformed 

the use of terrain attributes alone. Note that the differences in multispectral and 

SAR data performance were not large; RMSE and R² differences with the best 

Landsat 8 OLI optical result and the best Sentinel-1B SAR result were within 

2.48 m
3
 ha

-1
 and 7%, respectively. Saturation problems are considered to be one 

of the main causes of the relatively poor performance when using multispectral 

and SAR image data alone in our study. Using ALOS/PALSAR L-band data, 

Bagidadi et al. (2015) reported a backscatter saturation aboveground biomass 

level of 50 t ha
-1

 reached at age 3 years in Eucalyptus plantations in Brazil. Dos 

Reis et al. (2018) assessed the influence of age in the relationship between 

volume of Eucalyptus stands and the spectral response in Landsat spectral bands 

and multispectral indices, and found that the relationship reached the maximum 

value at age 5 years. After this age, the correlation between volume and Landsat 

spectral data was affected by saturation issues.  

The use of the combined stand age with multispectral image, SAR 

image and terrain attributes (i.e., Experiments (v) - (vii)) in RF models resulted 

in better volume estimates than those obtained when using the individual 

multispectral, SAR and digital terrain datasets (RMSE < 28 m³ ha
-1

 and R² > 

55%). While the remote sensing images and digital terrain datasets did not 

perform as well as the stand age estimates when used alone, the best model 
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performance (Experiment (viii)) was obtained when using a combination of the 

multispectral, SAR, terrain attributes in Experiments (v), (vi) and (vii) with 

stand age. The improvement in the strength of the models and the higher 

accuracy of volume estimates, which integrated stand age, multispectral and 

SAR remotely sensed data (Landsat 8 OLI and Sentinel-1B images) with terrain 

attributes in Eucalyptus plantations, were significant and resulted in the best 

performance RF model (R² = 71.43% and RMSE = 22.33 m
3
 ha

-1
) (Experiment 

(viii)). In a South Africa study, Dube et al. (2017) demonstrated that integrating 

multispectral SPOT 5 image and ancillary data (age and rainfall metrics) 

significantly improved volume estimation in Eucalyptus plantations (R
2
 = 77% 

and RMSE = 36.02 m
3  

ha
-1

). Others have used ASTER satellite data, age and 

site index as independent variables; for example, Gebreslasie, Ahmed, and van 

Aardt (2010) estimated Eucalyptus volume with R
2
= 88% (no area estimates 

were provided). These results confirmed the increased performance of a multi-

source dataset in explaining Eucalyptus volume, which was also noted in the 

present study. 

Figure 4 illustrates the one-to-one relationship between observed and 

predicted volume of Eucalyptus plantation as obtained using the two best-

performing models (i.e., Experiments (vii) and (viii)). Both experiments resulted 

in a predictable dispersion of the observed values in relation to the field-

measured values close to the axis of 45°, indicating increased predicted value 

precision in comparison to observed values. Figure 5 contains maps showing the 

spatial distribution of stand volume within the study area obtained from these 

two models corresponding with the date of the most recent (June 2017) field 

inventory measurement of volume. These two maps captured similar patterns in 

areas of higher and lower stand volumes, however, Experiment (vii) using stand 

age and terrain attributes (Figure 5 (a)) resulted in a smoother volume map than 

Experiment (viii) using the combined multispectral, SAR and digital terrain data 
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with stand age (Figure 5 (b)). One interpretation of the patterns in these two 

maps is that the multispectral and SAR imagery depict a higher level of volume 

spatial variability within the plantation. The use of the spatially-coherent remote 

sensing variables served to adjust the estimates of volume across the plantation 

when compared to plot-based field inventory estimates. Note that volume 

estimates were reasonably well distributed compared to the original range of 

field-measured volumes (Table 1, measurement of 2017).  

 

 

Figure 4. Scatterplots of the predicted vs. observed volume: (a) Experiment (vii) 

based on stand age with terrain attributes in validation samples (105 plots), and 

(b) Experiment (viii), based on the best combination of stand age with Landsat 8 

OLI multispectral data, Sentinel-1B SAR image data, terrain attibutes in 

validation samples (105 plots). A 1:1 line (black, dashed) is provided for 

reference. 
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Figure 5. Spatial distribution of volume estimates in the 1,498 ha Eucalyptus 

plantation obtained with the best-performing models: (a) Experiment (vii) based 

on stand age with terrain attibutes; and (b) Experiment (viii) based on stand age 

with the best combination of Landsat 8 OLI multispectral data, Sentinel-1B SAR 

image data, terrain attibutes together. 

 

 The estimated volumes using the RF model based on stand age plus 

DEM geomorphometrics in Experiment (vii) varied between 141.51-290.61 m³ 

ha
-1

, with a mean value of 208.97 m³ ha
-1

. In Experiment (viii), the RF model 

based on stand age plus multispectral, SAR and DEM data, the variability was 

148.29-280.54 m³ ha
-1

, with a mean value of 197.38 m³ ha
-1

. In most of the study 

area, the estimated volumes predicted in Experiments (vii) and (viii) ranged 

between 180-230 m³ ha
-1

. The total volume estimation across the 1,498 ha of 

Eucalyptus plantation when applying stand age plus the best available predictive 

variables (i.e., selected from the Landsat 8 OLI, Sentinel-1B and DEM-based 

datasets) was 294,751.45 m
3
. The mean annual increment in volume ranged 

from 20.84 to 46.49 m
3
 ha

-1
 year

-1
 depending on plot location. These values are 

consistent with mean annual increments in Eucalyptus plantations in Brazil 
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compiled from historical plantation records across the entire country (Gonçalves 

et al. 2013). 

The interpretation of RF Variable Importance confirmed that the use of 

stand age with multi-source remotely sensed data increased Eucalyptus volume 

estimation accuracy in a predictable pattern that was consistent with the idea of 

multi-source remote sensing data capturing plantation spatial variability in 

volume (Table 4). For example, while stand age was always the most important 

variable (IncMSE = 45%), subsequent variables were typically selected in a 

predictable pattern; first, variables from the Landsat 8 OLI multispectral image 

(IncMSE = 25%), second, variables from the Landsat 8 OLI and Sentinel-1B 

SAR textures (IncMSE = 12% and 11%, respectively), third, the terrain 

attributes (IncMSE = 9%), and fourth, indices from the Landsat 8 OLI 

multispectral image (IncMSE = 7%). This pattern is represented in Table 4 for 

the best-performing RF model. The PC descriptions in Table 4 were based on 

the importance of original variables in the loadings of PCA, i.e., the variables 

with higher contribution in each component. Landsat 8 OLI G, NIR, SWIR and 

texture were the most important selections (after stand age), followed by 

Sentinel-1B SAR textures, and then terrain attributes (in particular, slope, 

relative slope position and incidence value). Each of the selected variables 

contributed at least with 7% to the explanation of variance in the best 

performing RF model of volume.  
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Table 4. Generalized ranking and description of most important groups and 

individual multi-source variables as measured by RF Variable Importance metric 

in the best RF model predicting stand volume with 71% accuracy (RMSE = 

22.33 m
3
 ha

-1
) for 351 plots (246 training dataset, 105 validation dataset). (Note 

that a threshold of 7% of the variance explained was used to rank variables in 

this table). 

Generalized ranking 

of most important 

group of remotely 

sensed variables
1
  

RF 

Selected 

variables 

Description 

Landsat 8 OLI 

multispectral bands 

PC1 
Brightness across all spectral bands (except 

NIR)  

PC2 Contrast between visible and NIR bands 

PC3 Contrast between NIR and green bands 

PC4 Contrast between green and SWIR bands 

Landsat 8 OLI 

multispectral image 

texture 

PC5 
Contrast between mean green and SWIR high 

and low spatial frequency texture 

PC7 
Contrast between mean green and SWIR high 

spatial frequency texture  

Sentinel-1B SAR 

texture 

PC5 
Mean texture of VH backscatter (high spatial 

frequency) 

PC7 
Mean texture of VH backscatter (low spatial 

frequency) 

Terrain attributes 

Analytical 

hillshade 
Incidence value  

Relative slope 

position 
Slope position (in percent) 

Vertical distance 

to channel 

network 

Relative slope/drainage position  

Landsat 8 OLI 

multispectral indices 
PC1 

Equally weighted combination of 

multispectral indices 

Where: PC = principal component, DEM= Digital Elevation Model, SAR= Synthetic Aperture 

Radar. 1listed from top to bottom. 
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The use of principal components instead of raw remotely sensed 

variables (i.e., spectral bands, multispectral indices, textures measures, and so 

on) in combination with RF reduced data dimensionality and potential 

uncertainties in data selection based on RF variable importance rank (Fayad et 

al. 2014; Maack et al. 2015; Fedrigo et al. 2018; Pourrahmati et al. 2018). 

Remotely-sensed data are typically highly inter-correlated, and resulting 

multicollinearity can cause singularities in the RF models. Consequently, 

variable importance scores may not be reliable (Strobl et al. 2008). In one study 

by Pourrahmati et al. (2018), principal components were less error-prone than 

waveform metrics for estimation of canopy height using ICESat/GLAS and 

optical images data. In another study, Maack et al. (2015) used spectral, textural 

and photogrammetric information from very-high resolution (VHR) stereo 

satellite data (Pléiades and WorldView-2) to estimate forest biomass across two 

test sites located in Chile and Germany. They demonstrated that the 

implementation of PCA as predictor selection procedure minimizes predictor 

inter-correlation and aggregates information content of the respective predictor 

type, as was also observed in our study. Nonetheless, further research may 

explore the benefits of using PCA compared with other techniques separately 

(e.g., Variance Inflation Factor) for predictor selection in data with 

multicollinearity using RF models. 

To summarize, predictive RF models of Eucalyptus forest plantation 

volume using stand age alone, or stand age with multispectral, SAR and digital 

terrain data (in separate individual estimations), were less accurate than models 

constructed using an integrated multi-source dataset that yielded the best 

selection or combinations of these variables. The multi-source remote sensing 

approach can mitigate image acquisition issues, such as cloud cover restrictions 

on multispectral image acquisitions, and may also be effective in quantifying 
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expected productivity variability in plantations that result from mortality, growth 

limitations, pests, disease, and silviculture interventions.  

 

6. Conclusion 

This research examined the accuracy of forest volume estimation in a 

1,498 ha Eucalyptus plantation in Minas Gerais state, Brazil, using combinations 

of stand age, Landsat 8 OLI multispectral imagery, Sentinel-1B SAR data, and 

ALOS PALSAR DEM-derived terrain attributes. A Random Forest machine 

learning algorithm employed annual forest inventory field measurements in 246 

training plots for the years 2015-2017. Overall, the use of stand age alone 

provided 49% prediction accuracy in an independent set of 105 plots (RMSE = 

30.98 m³ ha
-1

). A combination of Landsat 8 OLI multispectral, Sentinel-1B 

SAR, and digital terrain data with stand age improved the plantation volume 

estimation to greater than 71% accuracy (RMSE = 22.33 m³ ha
-1

). Increased 

model performance was interpreted to be a result of spatial variability of growth 

in the plantation, which was captured in the multi-source remote sensing image 

data. The approach used in this study provides a framework for integrating field 

data and the recent free-and-readily available multi-source remote sensing data, 

highlighting an approach that significantly improved spatial prediction of 

volume estimation in Eucalyptus stands over that which could be obtained using 

age alone. Although established Eucalyptus plantations in Brazil are typically a 

relatively homogenous, single species monoculture, the approach in this study 

can be expected to provide similar results in different forest conditions. For 

example, the methods used in this study can be applied to additional forest 

attribute estimation (e.g., basal area, height, diameter and biomass) in 

plantations and natural forests in other regions of the world where remote 

sensing image data availability may be limited. Further research will determine 

model performance using object-based image analysis, multi-seasonal imagery, 
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specific terrain models that characterize soil and hydrological variability, and 

advanced deep learning algorithms.  
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Abstract: Freely-available multi-source remotely-sensed data, such as Landsat 8 

OLI, Sentinel-1B, and Sentinel-2A, offer a new opportunity for forest attribute 

estimation. The higher spectral and temporal resolution of such datasets are 

especially important for monitoring fast-growing forests, such as Eucalyptus 

plantations in Brazil. Using the random forest machine learning algorithm, we 

investigated the potential use of Sentinel-2A multispectral data to predict 

volume, basal area, and diameter at breast height (DBH) of Eucalyptus 

plantation compared with the previously available Landsat 8 OLI imagery when 

both multispectral data (i.e., Sentinel-2A and Landsat 8 OLI) were combined 

with Sentinel-1B SAR data and Digital Elevation Model (DEM)-derived terrain 

attributes. Additionally, we assessed the benefits of object-based approach for 

forest attribute modelling and mapping compared with the pixel-based approach. 

Sentinel-2A multispectral data had similar to superior capabilities for Eucalyptus 

stand attributes estimates compared to Landsat 8 OLI when combined with 

Sentinel-1B SAR data and DEM-derived terrain attributes. Sentinel-2A 

performed better in predicting volume (Root Mean Square Error (RMSE) = 

7.23%) and DBH (RMSE = 2.65%) in the pixel-based approach, while Landsat 8 

OLI performed better in predicting basal area (RMSE = 5.09%) in the object-

based approach. Thus, this study highlights the efficiency of freely-accessible 

multi-source datasets, such as Sentinel-1B, Sentinel-2A, ALOS/PALSAR DEM, 

and Landsat 8 OLI, for Eucalyptus plantation attributes estimation and also 

provides new insights into the opportunities and limitations related to the use of 

object-based approach for attributes estimation in planted forests. 

 

Keywords: Sentinel-1B SAR, Sentinel-2A, object-based forest attribute 

modeling. 
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1. Introduction 

In recent decades, remotely-sensed data have proven their usefulness to 

accurately provide information on forest ecosystems extent and characteristics 

(Chrysafis et al. 2017). Estimation of forest stand attributes using remotely 

sensed data has considerable significance for supporting activities related to 

forest inventory, planning, management, and monitoring from a local to a global 

scale (Chrysafis et al. 2017; Puliti et al. 2018; Reuveni et al. 2018). For such 

purposes, data from active or passive sensors have been used as predictor 

variables in combination with measures taken in the field from sampling plots. 

High spatial resolution sensors, light detection and ranging (LIDAR) and 

unmanned aerial vehicle (UAV) data have shown good potential for improving 

forest attribute estimates (e.g., Goodbody et al., 2017; Ota et al., 2017; 

Tompalski et al., 2018). However, their widespread application is hampered by 

cost limitations (Hawryło and Wężyk 2018).   

On the other hand, open access to medium-resolution multispectral 

satellite images (e.g. Landsat-7, Landsat-8, and Resourcesat-2) have created an 

opportunity to estimate forest attributes through remote sensing data even more 

applicable (Puliti et al. 2018). Despite the constraints arising from scene 

heterogeneity, these images have long been used for forest attribute estimation 

and mapping in different forest types around the world (Baghdadi et al. 2015; 

Dube and Mutanga 2015; López-Sánchez et al. 2017; López-Serrano et al. 2016; 

Zhao et al. 2016; J. Zhang et al. 2018). All of these studies focused on single-

sensor imagery; however, recent studies have shown that models combining 

multispectral optical and synthetic aperture radar (SAR) imagery performed 

substantially better than models using single-sensor imagery for predicting and 

mapping forest attributes (Ismail et al. 2015; Vaglio et al. 2017; Shao and Zhang 

2016; Vafaei et al. 2018; Pham et al. 2018). In addition, the increasing 

availability of ancillary data also offer new alternatives for improving forest 
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attribute estimation accuracy. Recent studies have integrated attributes derived 

from digital elevation models (DEM) with optical and SAR data to represent 

terrain conditions directly related to forest growth in the modeling of forest 

attributes with good results (López-Sánchez et al. 2017; López-Serrano et al. 

2016). 

The recent deployment of European Space Agency (ESA)'s Sentinel 

operational satellites has made high spatial resolution C-band SAR and 

multispectral optical data freely available at global scale, and along with the 

Landsat 8 OLI and ALOS/PALSAR datasets, these satellites have strongly 

facilitated forest monitoring (Roy et al. 2014; Torres et al. 2012; Li and Roy 

2017). The higher spectral and temporal resolutions of such datasets (i.e. 

Sentinel-1, Sentinel-2, and Landsat 8) are especially important for monitoring 

fast-growing forest, such as Eucalyptus plantations.  

Eucalyptus plantations are the most widely distributed planted forest in 

Brazil. They cover more than 5.6 million hectares in the country, contribute with 

17% of the harvested wood in the world (Ibá, 2016), and are managed with short 

cutting cycles ranging from 5 to 7 years (Scolforo et al. 2017; Raimundo et al. 

2017). Most of these plantations are established for wood production as even-

aged single-species monocultures, which leads to several distinct spectral, 

structural, and temporal characteristics that may affect their response in remotely 

sensed data (Ismail et al. 2015; Dube and Mutanga 2015; Dube et al. 2017).  

Previous studies have examined data obtained from sensors on a number 

of different satellites, including SPOT, IKONOS, ASTER, ALOS/PALSAR, 

ICESat/GLAS, and Landsat 8 for forest attributes estimation in Eucalyptus 

plantations (Gebreslasie, Ahmed, and van Aardt 2010, 2011; Dube and Mutanga 

2015; Ismail et al. 2015; Baghdadi et al. 2015; Dube et al. 2017). Although these 

remotely-sensed datasets have been proved useful in estimating forest attributes 

in general, more research is required to investigate the capabilities of new high 
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spectral, spatial, and temporal satellite resolution, such as Sentinel-1B and 

Sentinel-2A, in predicting forest attributes in Eucalyptus plantations. 

Furthermore, the majority of studies estimating forest attributes from 

remote sensing data estimation have been conducted on a pixel-based approach 

by matching in-situ measurements with individual pixels (Dube and Mutanga 

2015; Ismail et al. 2015; Dube et al. 2017; Gebreslasie, Ahmed, and van Aardt 

2011). However, an object-based image approach can combine spatial and 

spectral information within image analysis using image objects as basic units 

instead of individual pixels to extract information about forest canopies (Chen et 

al. 2011, 2018; Kajisa et al. 2009), and have not been thoroughly explored for 

forest attribute estimation.  

To the best of our knowledge, no study has been carried out aiming at 

estimating forest attributes based on the integration of the recently launched 

Sentinel-2A, Sentinel-1B SAR, Landsat-8 OLI with DEM-derived terrain 

attributes using both pixel-based and object-based approaches. For this reason, 

we investigated the potential use of Sentinel-2A multispectral data for 

Eucalyptus plantation attributes estimation compared with the previously 

available Landsat 8 OLI imagery when both multispectral data (i.e., Sentinel-2A 

and Landsat 8 OLI) were combined with Sentinel-1B SAR data and terrain 

attributes. Additionally, we assessed the benefits of object-based approach for 

forest attribute modelling and mapping compared with the pixel-based approach 

by employing a nonparametric modelling approach.  

 

2. Study area 

This study was conducted in a 1,498 ha privately-managed Eucalyptus 

plantation in Diamantina municipality, northern Minas Gerais state, Brazil 

(Figure 1). The region experiences humid sub-tropical climatic conditions, 

corresponding to Köppen’s climatic type Cwb, with the rainy season occurring 
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between the months of October and March, and mean annual rainfall of 1,468 

mm. Mean daily temperatures during the hottest month typically do not exceed 

22°C (Alvares et al. 2013). Elevations range between 700 m and 1100 m above-

mean-sea-level. Soils are predominately Cambisols and Latosols.  

The Eucalyptus plantation was established between November 2010 and 

October 2012, using clones of the species E. urophylla x E. grandis, which 

typically lead to uniform crown and tree density conditions. The stands were 

established with approximately 1100 trees per hectare, using initial spacing of 

3.6 x 2.5 m. Intensive soil preparation and weed control measures have been 

practised since plantation establishment, with crown closure often occurring 

within the first 18 months. 

 

 

Figure 1. Location of the study area in northern Minas Gerais state, Brazil, and 

spatial distribution of sampling plots used in the field inventory. 
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3. Methods 

3.1 Field data  

Field data collection was performed in June 2017 in 97 plots across the 

Eucalyptus plantation using a standard continuous forest inventory (CFI) 

system. The sample plots were distributed systematically and located in the field 

using survey-grade real time kinetic (RTK) GPS. A plot size of 25 m × 20 m 

(500 m²) was used. Within each plot, tree diameter at breast height (DBH) of all 

stems and the total height of the first 15 trees with normal stems (without 

bifurcation or any other defect) were measured. Estimates of basal area (m
2
 ha

−1
) 

and total stem volume (m
3
 ha

−1
) were obtained from the information collected in 

the plots. The individual volume equations were based on DBH and total height. 

All fitted equations showed high coefficient of determination (R² > 97%) and 

low residual standard error (Sxy < 0.05 m³). The plot-based field inventory values 

for the Eucalyptus plantation attributes are summarized in Table 1. 

 

Table 1. Eucalyptus plantation description and attribute estimates obtained from 

forest inventory field data collection in 97 sampling plots. 

Variable Mean Sd Range 

Stand age (years) 6.44 0.21 4.70 – 6.60 

Total height (m) 23.43 2.11 18.63 – 28.62 

DBH (cm) 15.01 0.71 12.71 – 17.48 

Basal area (m
2
 ha

-1
) 19.81 2.01 13.36 – 24.96 

Volume (m³ ha
-1

) 211.49 38.99 131.28 – 338.57 

Where DBH = Diameter at breast height and Sd = Standard Deviation.  
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3.2 Remote sensing data collection and preprocessing   

The remotely-sensed data acquired for this study were: Landsat 8 OLI 

and Sentinel-2A multispectral imagery, Sentinel-1B SAR data, and 

ALOS/PALSAR (Advanced Land Observing Satellite/Phase Array type L-band 

Synthetic Aperture Radar) DEM data.  

The selected Landsat 8 OLI satellite scene (Path 218 and Row 72) 

covering the study area was acquired on the closest date to the field 

measurement dates (i.e., August 20, 2017), and was relatively cloud-free and 

without obvious radiometric issues. This scene was obtained from the USGS 

database (United States Geological Survey) as Landsat level 2 surface 

reflectance collection 1 product with a 30 m geometric resolution, less than one-

half pixel RMSE locational error, and the following bands: coastal aerosol (C, 

0.43–0.45 μm), blue (B, 0.45–0.51 μm), green (G, 0.53–0.59 μm), red (R, 0.64–

0.67 μm), near infrared (NIR, 0.85–0.88 μm), shortwave infrared-1 (SWIR1, 

1.57–1.65 μm), shortwave infrared-2 (SWIR2, 2.11–2.29 μm). 

Sentinel data were acquired from Copernicus Open Access Hub 

(https://scihub.copernicus.eu/). Atmospherically-corrected bottom-of-

atmosphere (BoA) Sentinel-2 data was produced using the Sen2Cor processor 

(currently version 2.5.5), available on the Sentinel Application Platform (SNAP) 

and developed by ESA to perform atmospheric, terrain, and cirrus correction of 

top-of-atmosphere Level-1C input data. We selected an image with acquisition 

date close to the Landsat scene acquisition date, with relatively cloud-free 

coverage, and taken on August 30, 2017. Sentinel-2A satellite multispectral 

image contains 13 spectral bands in the visible and near-infrared (VNIR) to 

shortwave infrared (SWIR) spectral range: four bands have a spatial resolution 

of 10 m (blue (B): 490 nm, green (G): 560 nm, red (R): 665 nm and near-

infrared (NIR): 842 nm); six bands have a spatial resolution of 20 m (red edge 1: 

705 nm, red edge 2: 740 nm, red edge 3: 783 nm, narrow NIR: 865 nm, SWIR1: 
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1610 nm and SWIR2: 2190 nm); and three bands have a spatial resolution of 60 

m (coastal aerosol: 443 nm, water vapor: 940 nm and SWIR cirrus: 1375 nm). In 

this study, we used only the Sentinel-2A bands with spatial resolutions of 10 m 

and 20 m. 

The selected Sentinel-1B SAR scene was acquired on the date that most 

coincided with the field measurement dates (i.e., August 19, 2017, respectively). 

We used Ground Range Detected (GRD) Level-1 data acquired in 

interferometric wide swath (IW) mode with dual vertical-vertical (VV) and 

vertical horizontal (VH) polarization. These SAR data were calibrated, 

radiometrically- and geometrically-corrected and filtered using the Sentinel-1 

Toolbox implemented in the software SNAP and have a spatial resolution of 10 

m. 

A high resolution (12.5 meters) DEM from ALOS/PALSAR DEM data 

source was used in this study to quantify the geomorphometric conditions in the 

Eucalyptus plantation area. Prior to calculation of the terrain attributes, the DEM 

was preprocessed with a standard gap/sink-filling error detection and noise 

removal routine. Basic terrain attributes included the following terrain variables: 

slope, aspect (converted to linear aspect with a zero value for north facing 

slopes), total curvature, relative slope position, and slope length (Hengl and 

Reuter 2009). In addition, several specific terrain attributes were computed to 

characterize more complex geomorphometric and hydrological variability 

(Adams, Barnard, and Loomis 2014). First, derivatives of slope were combined 

with roughness and distance measures to create 9 specific terrain attributes: 

Terrain Roughness Index (TRI), Surface Relief Ratio (SRR), Surface Area Ratio 

(SAR), Compound Topographic Index (CTI), Topographic Wetness Index 

(TWI), SAGA Topographic Wetness Index (SAGA TWI), Integrated Moisture 

Index (IMI), vertical distance to channel network (VDCN), and Topographic 

Position Index (TPI). These variables were selected to provide insight into site-
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specific water-, gravity- and wind-field conditions expected to vary across the 

large geographic region of interest. Second, slope derivatives were combined 

with estimates of insolation to create 3 attributes to characterize mean solar-field 

conditions: Topographic Openness, Site Exposure Index (SEI), and Heat Load 

Index (HLI) (Mohamedou, Tokola, and Eerikäinen 2017). All geomorphometric 

attributes were calculated using either the SAGA GIS software package (v. 

5.0.0) or the Geomorphometry and Gradient Metrics Toolbox v2.0 (Evans et al., 

2014).  

 

3.3 Extraction of textural images from Landsat 8 OLI, Sentinel-2A and 

Sentinel-1B SAR data 

The Grey Level Co-occurrence Matrix (GLCM) statistical texture 

approach (Haralick, Shanmugam, and Dinstein 1973) was used to generate 

texture images (Lu et al. 2016) from the near-infrared (NIR) bands of Landsat 8 

OLI and Sentinel-2A multispectral images, and the VV Sentinel-1B SAR 

backscatter data. These images appeared visually to contain high image contrast 

in the Eucalyptus plantations of interest. Eight GLCM texture features were then 

generated with 64-bit quantization, over small windows (3 x 3), and averaged for 

directional texture: mean (MEA), variance (VAR), homogeneity (HOM), 

contrast (CON), dissimilarity (DIS), entropy (ENT), second moment (2M), and 

correlation (COR). A small window size was used in order to preserve high 

frequency spatial information, which was shown in earlier work to decrease 

when using larger windows as a result of over-smoothing of fine-scale textural 

variations (Franklin, Wulder, and Lavigne 1996). Recent research has also 

documented improved performance of small window sizes when applied to 

forest attribute estimation in Eucalyptus plantations (Dube and Mutanga 2015). 

Note that our goal was to characterize the fine-scale spatial heterogeneity of 

Eucalyptus plantation structures and not to test all possible texture methods and 
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spatial operators. Our intent was to present an initial step using statistical 

textures to augment the spectral domain of the multi-source remotely sensed 

imagery with high frequency spatial information (López-Serrano et al. 2016).  

Texture analysis was performed using software ENVI Version 4.7 (Exelis Visual 

Information Solutions, Boulder, Colorado). 

 

3.4 Image segmentation 

Segmentation is the process of clustering neighbouring pixels with 

similar spectral and spatial characteristics to minimize the internal spectral and 

spatial heterogeneity of samples (Blaschke 2010). Image segmentation was 

performed in eCognition (Definies, 2009) using the multiresolution 

segmentation algorithm (Baatz and Schäpe, 2000) independently for the Landsat 

8 OLI and Sentinel-2A multispectral images. For both images, the 

atmospherically corrected multispectral bands of the visible and near-infrared 

(VNIR) to shortwave infrared (SWIR) spectral range were used for 

segmentation. A scale factor of 15 was used for the Landsat 8 OLI segmentation, 

which produced a total of 2079 objects. A scale factor of 30 was used for the 

Sentinel-2A segmentation, creating 2692 objects. Segmentation scale factors 

were selected based on previous test of segmentation for predicting forest 

attributes. For both segmentations, to the shape factor was assigned the value of 

0.3. The compactness factor was set as 0.5 and 0.6 for the Landsat 8 OLI and 

Sentinel-2A segmentations, respectively. The shape factor determines the 

proportionate weighting between colour and shape criteria in the segmentation, 

while the compactness factor controls the compactness of resulting objects 

(Baatz and Schäpe, 2000). For this criterion, values close to one allow for more 

compact objects. The compactness factor used was determined by visual 

inspection. 
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3.5 Estimating forest attributes 

We used the pixel-based and object-based approaches to model and map 

volume (V), basal area (BA), and diameter at breast height (DBH) in a 

Eucalyptus plantation. Two data combination were used: (I) Landsat 8 OLI 

multispectral optical data combined with Sentinel-1B SAR, and 

ALOS/PALSAR DEM-derived data; and (II) Sentinel-2A multispectral optical 

data combined with Sentinel-1B SAR, and ALOS/PALSAR DEM-derived data. 

In the pixel-based and the object-based approaches, data values were collected 

from a single pixel and a single object (the mean reflectance of pixels within the 

object) on the field-measured plot locations, respectively, as exemplified in 

Figure 2. 

 

 

                                               (a)                              (b) 

Figure 2. Exemplification of data collection in the pixel-based (a) and the object-

based (b) approaches. 

 

For both approaches, Random Forest (RF) machine learning algorithm 

(Breiman 2001) was used to model and predict volume (V), basal area (BA), and 

diameter at breast height (DBH). Random Forest (RF) regression algorithm is an 

ensemble method that combines multiple decision trees and obtains results by 

averaging the predictions from all individual regression trees. RF has proven to 

yield high prediction accuracy in analysis of complex variable datasets in 

forestry and multi-source remote sensing (Dube et al. 2015; Gao et al. 2016; 
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Novelli et al. 2016; Franklin and Ahmed 2017; C. Zhang et al. 2018), and was 

chosen in this study due to its stability and efficiency in terms of handling a 

large number of predictor variables. The total of 97 field-sampled plots was 

randomly divided into 70% (68 plots) and 30% (29 plots) for training and 

validation of the RF models, respectively. We used 500 decision trees in each 

RF implementation following preliminary tests of model performance for each 

forest attribute estimation, whereas the number of variables randomly sampled at 

each split was equal to the square root of the number of variables. 

A backward stepwise predictor selection was applied for each RF model 

to ensure that only predictor variables that decreased the overall model 

uncertainties were used. Accordingly, in each run, 20% of the least important 

predictors were removed and the resulting Root Mean Square Error (RMSE) 

based on comparisons to the field inventory calculations in the validation plots 

was assessed. Initial tests revealed that this method produced the best overall 

predictive accuracy and allowed us to simplify the modelling process by 

identifying the minimum number of predictors to offer the best predictive 

accuracy (see also Ismail and Mutanga 2010). Finally, we computed the RF 

Variable Importance metrics, based on recursive substitution, enabling the most 

important variables in each model run to be interpreted based on the percentage 

increase of the mean square error (IncMSE) occurring when each variable was 

removed from the model. Next, the IncMSE was normalised by the ratio of the 

largest IncMSE (resulting in values between 0 and 1), and multiplied by 100 

(Were et al. 2015); the higher an average accuracy decrease following variable 

removal, the higher the relative importance of that variable (Breiman 2001). All 

RF analyses were performed using the R software package randomForest (R 

Core Team, 2017). 

 

 



134 

 

3.6 Accuracy assessment 

The accuracies of predicted Eucalyptus plantation attributes were 

evaluated using RMSE calculated based on field-based inventory estimates with 

the prediction values of the validation data (29 plots).  In addition, we calculated 

the RMSE expressed as percentage (RMSE (%)), as described in Equations (1) 

and (2). 

RMSE= √∑
(Xi - X̂i)

n

2
n
i=1                                                                                          (1) 

RMSE (%) = 
RMSE

X̅
×100                                                                                      (2) 

where n is the number of plots in the dataset; X̂i is the estimated value of an 

Eucalyptus plantation attribute; Xi is the observed value of an Eucalyptus 

plantation attribute in the validation dataset; and X̅ is the mean value of each 

Eucalyptus attribute in the validation dataset.  

The estimated Eucalyptus plantation attribute maps were computed 

using a combination of the best modelling approach (pixel-based or object-

based) and datasets. 

 

4. Results 

Table 2 summarizes the prediction results of the Eucalyptus plantation 

attributes using different sensors and prediction approaches. Sentinel-2A data 

appeared to have a greater explanatory power in predicting volume (RMSE = 

15.23 m
3
 ha

-1
) and DBH (RMSE = 0.39 cm) compared to Landsat 8 OLI in the 

pixel-based modelling approach, as one would expect due to high spatial 

resolution of Sentinel-2A imagery. On the other hand, Landsat 8 OLI result in 

improved basal area estimates in the object-based approach (RMSE = 0.97 m
2
 

ha
-1

). 
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Table 2. Performance of the RF models for predicting volume (m
3
 ha

-1
), basal 

area (m
2
 ha

-1
), and DBH (cm) in a Eucalyptus plantation based on different 

remotely-sensed datasets. 

Modelling  

approach 

Remotely-

sensed data 

combination* 

RMSE 

Volume Basal Area DBH 

m
3
 ha

-1
 % m

2
 ha

-1
 % cm % 

Pixel-based 
(I) 19.74 9.33 1.16 6.04 0.40 2.67 

(II) 15.23 7.23 1.12 5.91 0.39 2.65 

Object-

based 

(I) 19.55 9.41 0.97 5.09 0.41 2.75 

(II) 16.69 7.97 1.11 5.79 0.51 3.39 

*(I)= Landsat 8 OLI multispectral optical data combined with Sentinel-1B SAR, and 

ALOS/PALSAR DEM data; (II) = Sentinel-2A multispectral optical data combined with Sentinel-

1B SAR, and ALOS/PALSAR  DEM data. RMSE= Root Mean Square Error; DBH = diameter at 

breast height. 

 

Figures 3 and 4 show a comparison of measured versus predicted forest 

attributes, where values closer to the axis of 45° indicate higher accuracy. On 

average, Eucalyptus stand attributes were estimated with a coefficient of 

determination (R
2
) lower than 0.70. The large range of coefficients of 

determination values (0.18–0.68) reveals the complexity of modelling forest 

attributes using remotely-sensed data. In our study, volume was the best 

predicted variable among the forest attributes, whereas basal area appears as the 

most difficult to predict using remotely-sensed data. 
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Figure 3. Scatterplots of the predicted versus measured values of forest attributes 

in the pixel-based approach: volume (a), basal area (b), and diameter at breast 

height (DBH) (c) based on Landsat 8 OLI multispectral optical data combined 

with Sentinel-1B SAR, and DEM-derived terrain attributes; and volume (d), 

basal area (e), and DBH (f) based on Sentinel-2A multispectral optical data 

combined with Sentinel-1B SAR, and DEM-derived terrain attributes. 
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Figure 4. Scatterplots of the predicted versus measured values of forest attributes 

in the object-based approach: volume (a), basal area (b), and diameter at breast 

height (DBH) (c) based on Landsat 8 OLI multispectral optical data combined 

with Sentinel-1B SAR, and DEM-derived terrain attributes; and volume (d), 

basal area (e), and DBH (f) based on Sentinel-2A multispectral optical data 

combined with Sentinel-1B SAR, and DEM-derived terrain attributes. 

 

Figures 5, 6, and 7 show the forest attribute estimation maps of the 

Eucalyptus plantation, which were obtained by both object-based (basal area) 

and pixel-based (volume and DBH) approaches. The mean DBH in the study 

area was equal to 15.00 cm with values ranging from 13.86 cm to 16.52 cm. For 

basal area, the estimated values ranged from 15.97 m
2
 ha

−1
 to 22.34 m

2
 ha

−1
, 

with a mean value of 19.15 m
2
 ha

−1
. The estimated volume varied between 

160.00 m
3
 ha

−1
 and 298.26 m

3
 ha

−1
, with a mean value of 208.97 m

3
 ha

−1
. The 

total volume estimation across the 1,498 ha of Eucalyptus plantation was 
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314,389.08 m
3
, resulting in a range of mean annual increment in volume from 

24.84 m
3
 ha

−1
 year

−1
 to 46.31 m

3
 ha

−1
 year

−1
, depending on the plot location. 

Figure 8 shows the relative importance of each selected variable for 

predicting Eucalyptus stand attributes in our study. The spectral reflectance in 

the shortwave infrared (SWIR1) region, from both Landsat 8 OLI and Sentinel-

2A images, was the most influential variable for predicting volume, basal area, 

and DBH. The spectral reflectance in the green (G) and red (R and Red edge 1) 

regions were also important variables for predicting the forest attributes under 

study. Terrain attributes (especially HLI, relative slope position, total curvature, 

aspect, and TRI) contributed significantly for the prediction of Eucalyptus stand 

attributes: these terrain attributes corresponded to 54.5%, 41.6%, and 53.8% of 

the selected variables by RF models to predict volume, basal area, and DBH, 

respectively. Texture measures were more important to predict basal area 

(25.0% of the selected variables by RF model) than volume (9.1% of the 

selected variables by RF model) and DBH (7.7% of the selected variables by RF 

model). SAR data contributed only for the prediction of volume and DBH in our 

study. 
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Figure 5. Spatial distribution of volume estimates in the 1,498 ha Eucalyptus 

plantation obtained with the best-performing RF model in the pixel-based 

approach based on Sentinel-2A multispectral optical data combined with 

Sentinel-1B SAR and DEM-derived terrain attributes. 
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Figure 6. Spatial distribution of basal area estimates in the 1,498 ha Eucalyptus 

plantation obtained with the best-performing RF model in the object-based 

approach based on Landsat 8 OLI multispectral optical data combined with 

Sentinel-1B SAR and DEM-derived terrain attributes. 
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Figure 7. Spatial distribution of diameter at breast height (DBH) estimates in the 

1,498 ha Eucalyptus plantation obtained with the best-performing RF model in 

the pixel-based approach based on Sentinel-2A multispectral optical data 

combined with Sentinel-1B SAR and DEM-derived terrain attributes. 
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Figure 8. Relative importance of the variables as measured by the Variable 

Importance metric in the Random Forest algorithm predicting volume (a), basal 

area (b) and diameter at breast height (DBH) (c). 
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5. Discussion 

The use of remotely-sensed data for forest attributes estimation is a 

major challenge due to numerous factors influencing the relationship between 

forest attributes and remote sensing variables, as for instance, topography, soil 

conditions, and forest structures (Lu et al. 2016; Reuveni et al. 2018; Galidaki et 

al. 2017). Therefore, investigating new prediction approaches and new remotely-

sensed data, including their combinations with ancillary data, for forest attributes 

estimation is still required. Our primary objective was to test whether the 

Sentinel-2A sensor with its new red edge bands can help to improve the 

accuracy of forest attributes estimation compared to the use of Landsat 8 OLI 

data, when multispectral optical imagery are combined with SAR data and 

DEM-derived terrain attributes.  

We found that using Sentinel-1 SAR and Sentinel-2A multispectral 

imagery data can give satisfactory results in predicting volume of Eucalyptus 

stands independently of the prediction approach used, especially with the 

inclusion of DEM-derived terrain attributes as ancillary data. These results are in 

agreement with the findings of previous studies that reported slightly better 

performance using the Sentinel-2A optical imagery compared with the Landsat 8 

OLI in vegetation analysis (Chrysafis et al. 2017; Korhonen et al. 2017). The 

better performance of the RF model that included Sentinel-2A data may be 

related to the Red edge 1 band, which was frequently selected as a predictor 

variable. Similar performance was also observed, in a lesser degree, in 

predicting basal area and DBH of Eucalyptus stands when the pixel-based 

approach was used. However, the accuracy estimates of DBH were close to each 

other in terms of RMSE (Table 2). In addition, for basal area prediction, the best 

result was obtained when Landsat 8 OLI data was combined with Sentinel-1B 

SAR and DEM-derived terrain attributes in the object-based approach.  
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This study also demonstrates that the combination of freely-accessible 

multi-source datasets (Sentinel-1B, Sentinel-2A, ALOS/PALSAR DEM, and 

Landsat 8 OLI) could significantly improve the overall accuracy of forest 

attributes estimation based on remotely-sensed data. We obtained more accurate 

estimates than previous studies using other remotely-sensed data combination 

for predicting forest attributes in Eucalyptus plantations. Ismail et al. (2015) 

combined ALOS/PALSAR backscatter with SPOT 4 multispectral optical data 

and stand age as ancillary data to predict volume in Eucalyptus plantations in 

Zululand, South Africa. The best regression model of volume fitted by the 

authors produced a RMSE of 31.71 m
3
 ha

−1
, which was considered appropriate 

for operational forest management in this region.  

In another study in South Africa, Dube et al. (2017) demonstrated that 

integrating multispectral SPOT 5 image, stand age, and rainfall metrics 

significantly improved volume estimation in Eucalyptus plantations (RMSE = 

36.02 m
3  

ha
-1

). The results found by these authors correspond almost twice the 

error estimates found in our study for volume estimation (RMSE = 15.23 m
3
 

ha
−1

), thus highlighting the potential of the combination of Sentinel-2A spectral 

data with Sentinel-1B SAR and DEM-derived terrain attributes for predicting 

Eucalyptus stand attributes. Although most of the studies have focused in 

predicting aboveground biomass and volume of Eucalyptus plantations (Dube et 

al. 2014, 2015, 2017; Ismail et al. 2015; Dube and Mutanga 2015), few studies 

investigated the potential of remotely-sensed data to predict DBH and basal area 

of these plantations.  

Using optical IKONOS satellite data (multispectral and panchromatic) 

as independent variables, Gebreslasie, Ahmed, and van Aardt (2011) estimated 

DBH and basal area of Eucalyptus stands using Artificial Neural Networks 

(ANN) models with RMSE = 5.07% and RMSE = 8.71%, respectively. In 

another study, the same authors predicted basal area of Eucalyptus plantations 
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using ASTER satellite data, age and site index as independent variables with a 

RMSE of 7.39 m
2 
(Gebreslasie, Ahmed, and van Aardt 2010). 

The object-based approach did not improve the estimation accuracy of 

all tested forest attributes. However, this approach was especially important for 

predicting basal area, whereas the pixel-based approach result in more accurate 

estimates of volume and DBH. Chen et al. (2011) compared the pixel-based and 

object-based approaches to estimate forest canopy heights using Quickbird 

imagery data. These authors found that most of the object-based models results 

in a higher accuracy for the estimated canopy height than the pixel-based model; 

however, the pixel-based approach still showed comparable or better 

performance than the object-based approach at some segmentation scales.  

C. Zhang et al. (2018) assessed the benefits of object-based approach for 

sawgrass biomass modelling and mapping in the Everglades, Florida, compared 

with the pixel-based approach. The results found by these authors indicate that 

object-based modelling approach is a promising alternative to the traditional 

pixel-based approach, since the former approach provides the capability to 

match in-situ data to an image object to reduce the positional discrepancy 

between image and field data. The positional discrepancy of sample plots is one 

of the major uncertainties in forest attributes estimation using remotely sensed 

data (Lu et al. 2016), and there is a higher probability that a field plot be located 

in an object than in a single pixel.  

On the other hand, selecting an appropriate object scale for matching in-

situ measures is a difficult task (C. Zhang et al. 2018). In theory, a field-

measured plot should match a “pure” image object which can represent well the 

vegetation structure of this plot. This indicates that selecting an appropriate 

object scale is crucial for applying an object-based approach, since the selection 

of arbitrary scales may result in poor accuracy of forest attribute estimates (Chen 

et al. 2011). In this study, a trial-and-error procedure was applied to select the 
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scale parameter, i.e., selecting a scale parameter, running the RF models, and 

then assessing the forest attributes estimates until the best results were achieved.  

The current study serves as a useful illustration of the potentials of using 

freely-available multi-source remotely-sensed data (i.e., Sentinel-2A, Sentinel-

1B SAR, Landsat 8 OLI, and ALOS/PALSAR DEM) for estimation of 

Eucalyptus stand attributes. It also provided some new and encouraging results 

of the potential of the proposed remotely-sensed data combination to support 

monitoring and management of planted forests without the need for commercial 

satellite imagery. Regarding the employed object-based approach, general 

conclusions can hardly be drawn on the basis of the results provided by this 

study; there are many specific limitations that preclude general inference of the 

benefits of using object-based approach for forest attribute estimation compared 

with the traditional pixel-based approach. 

 

6. Conclusions 

The main merit of this study is the illustration of a new remotely-sensed 

data combination for forest attribute prediction in even-aged single-species 

monocultures as Eucalyptus plantation using the freely-available and recently 

launched Sentinel-2A and Sentinel-1B SAR data integrated with DEM-derived 

terrain attributes. Sentinel-2A multispectral optical imagery have similar to 

superior capabilities of Landsat 8 OLI in estimating Eucalyptus stand attributes 

when combined with Sentinel-1B SAR data and DEM-derived terrain attributes. 

Sentinel-2A performed better in predicting volume and DBH in the pixel-based 

approach, while Landsat 8 OLI outperformed in predicting basal area in the 

object-based approach. This study provides new insights into the opportunities 

and limitations related to the use of object-based approach for forest attribute 

estimation in planted forests; however, it is important to acknowledge the 

intrinsic limitations that object-based approach have when applied for forest 



147 

 

attribute modelling. Further research will provide additional insight into 

appropriate object scale to achieve more accurate estimates of forest attributes. 

Also further research should investigate whether multi-seasonal imagery may 

have greater benefit in predicting forest attributes of Eucalyptus plantations. 
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Abstract: Forest site productivity classification is a fundamental forest 

management tool for strategic planning of either new or established stands, 

definition of silvicultural treatments, and quantification of productive potential 

of forests. Typically, site productivity classification is achieved through field 

observations collected at sample plots. In some cases, appropriate field measures 

are possible (for example, in new or young stands, over large geographic 

regions, and in areas with accessibility constraints or a high degree of spatial and 

temporal variability). In this research, we describe an indirect and coherent 

spatial approach to predict forest productivity at regional scale based on terrain 

attributes derived from an ALOS PALSAR (Advanced Land Observing Satellite 

- Phase Array type L-band Synthetic Aperture Radar) digital elevation model 

(DEM) and bioclimatic variables for Eucalyptus plantations across an area of 

heterogeneous terrain and climate conditions, located in Minas Gerais state, 

Brazil. Terrain attributes derived from a DEM and bioclimatic variables 

correctly classified site productivity, with an overall accuracy of 91.6%, and 

predicted maximum mean annual increment (MAImax) with a Root Mean Square 

Error (RMSE) of 6.1 m³ ha
-1

 yr
-1

 (16.2 %). Temperature seasonality (BIO04), 

precipitation of the driest month (BIO14), elevation, and annual mean 

temperature (BIO01) emerged as major determinants of potential productivity 

for Eucalyptus plantations in our study area, enabling us to discriminate three 

site productivity classes, and predict the potential MAImax for an area of 

approximately 100,690 km² in the northeast, north and central regions of Minas 

Gerais state. The approach developed here can be used to estimate site 

productivity and potential MAImax at any geographical location, given the 

relevant terrain attributes and bioclimatic variables, thereby supporting forest 

management decisions. This approach could be also linked to climate models to 

predict how productivity of Eucalyptus plantations would change under climate 

change. 
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Keywords: bioclimatic variables; terrain attributes; Random Forest; forest 

management. 

 

1. Introduction 

The Brazilian forestry sector has intensely increased the productivity of 

Eucalyptus plantations through intensive silviculture, genetic selection, and 

breeding techniques (Gonçalves et al. 2013; Campoe et al. 2013). The first 

commercial Eucalyptus plantations in Brazil were established in the early 1900s, 

and due to the recent large-scale afforestation and reforestation efforts, such 

plantations have now expanded rapidly to cover more than 5.7 million hectares 

in the country (Ibá, 2017). Most of these plantations are located in the southeast 

and central-west regions of Brazil, and are managed in short rotations (6–8 

years) with the mean annual increment varying between 25 to 60 m
3
 ha

−1
 year

−1
 

of roundwood, depending on the environmental conditions (Gonçalves et al. 

2013). The major determinants of productivity in Eucalyptus plantations include 

tree genetic material and local site environment (Resende et al. 2016; Marcatti et 

al. 2017). Thus, the high yields achieved by genetically identical clonal 

Eucalyptus stands may be limited by the spatial variability of climate and terrain 

conditions (e.g. temperature, precipitation, solar radiation, and slope). This can 

lead to heterogeneity in tree growth and reductions in productivity at the stand 

and plantation levels (Stape et al. 2010; Gonçalves et al. 2013; Campoe et al. 

2016). 

Forest site productivity is defined as the potential of a site to produce 

wood biomass (Skovsgaard and Vanclay 2008; Skovsgaard and Vanclay 2013) 

and is usually determined based on characteristics of forest vegetation (e.g. 

height of dominant trees at a given reference age) or the site (e.g. topography 

and soils), or both combined (Véga and St-Onge 2009; Parresol et al. 2017; 

Huang et al. 2017; Sharma and Parton 2018; Díaz-Varela et al. 2011). Forest site 
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productivity classification is a widely used forest management tool for strategic 

planning of new or established stands, definition of appropriate silvicultural 

treatments (such as when to start thinning and/or when to clearfell the forest), 

and to quantify the productivity of stands and plantations (Burkhart and Tomé 

2012). The most common and applied approach of evaluating site productivity is 

the site index (SI) (Skovsgaard and Vanclay 2008; Skovsgaard and Vanclay 

2013), which is based on the strong correlation between volume and height 

growth (Sharma, Brunner, and Eid 2012), and is defined as the height of 

dominant trees of a stand at a predetermined reference age (Assmann 1970; 

Burkhart and Tomé 2012). This approach relies on the establishment of detailed 

stand or plot samples, which are not always available for measurement (Bravo-

Oviedo et al. 2008). Also, such field observations are relatively costly, time-

consuming and often spatially-limited based on sample plot distribution and 

intensity (Bueis et al. 2016). An alternative approach is to estimate potential 

forest site productivity from site variables describing location, topography, or 

climate (Laamrani et al. 2014; Sharma and Parton 2018; Parresol et al. 2017; 

Huang et al. 2017). Increasingly, these variables can be readily obtained over 

large geographic regions from existing maps, aerial and satellite remote sensing 

imagery, and digital geographic information system (GIS) databases (Sharma, 

Brunner, and Eid 2012). 

Previous studies have estimated the productive potential of forests based 

on topography and climate variables (e.g. Chen et al., 2002; Díaz-Varela et al., 

2011; Laamrani et al., 2014). Most of these studies have used basic terrain 

information, such as elevation, slope, aspect, and curvature (Latta, Temesgen, 

and Barrett 2009; Díaz-Varela et al. 2011; Sharma, Brunner, and Eid 2012; 

Laamrani et al. 2014; Huang et al. 2017). Recently, advances in remote sensing 

technologies have allowed for increasingly detailed land surface representation 

with dense-grid Digital Elevation Models (DEMs), from which more complex 
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terrain derivatives can be created to classify forest sites and estimate the 

productive potential of forests. The basis for using these complex terrain 

attributes is the expected relationship between site conditions and growth 

potential (Laamrani et al. 2014; Bueis et al. 2016; Parresol et al. 2017); for 

example, it has been shown that terrain attributes, in certain forest ecosystems, 

influence local soil conditions and microclimates through the pattern of 

insolation, precipitation, temperature, and relative humidity (Bravo et al. 2011; 

Bueis et al. 2016; Berrill and O’Hara 2016; Adams, Barnard, and Loomis 2014). 

In this study, we used a nonparametric modeling approach to examine 

relationships between terrain attributes and climate data on forest site 

productivity and maximum mean annual increment (MAImax) at regional scale. 

Our objective was to determine whether terrain attributes derived from a DEM 

and/or bioclimatic variables could be used as predictors of productive potential 

of Eucalyptus plantations across an area of heterogeneous terrain and climate 

conditions in Minas Gerais state, Brazil. Although many studies have reported 

the efficacy of soil attributes in improving forest productivity prediction based 

on site factors (Chen, Krestov, and Klinka 2002; Bueis et al. 2016; Bravo et al. 

2011; Mohamed et al. 2014; Parresol et al. 2017; Sharma, Brunner, and Eid 

2012), soil data were not included in our approach because of the lack of 

accurate data for the study area. Our findings support management decision-

making by identifying the terrain attributes and climate conditions most strongly 

correlated with Eucalyptus plantation productivity. In addition, improved 

forestry management practices (e.g., sampling, experimental design, growth 

modelling, plantation silviculture and establishment) can be specified to aid 

medium and long-term planning.  
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2. Study area 

The research area includes 180 Eucalyptus stands in 19 privately-

managed Eucalyptus plantations located in the northeast, north and central 

regions of Minas Gerais state, Brazil (Figure 1). These Eucalyptus plantations 

are located in tropical and sub-tropical climatic areas, corresponding to 

Köppen’s climatic types Aw, Cwa, and Cwb, with dry winter and the rainy 

season occurring between the months of October and March. During the hottest 

months, mean daily temperatures typically do not exceed 22°C for Aw climatic 

types, but it exceeds 30°C for Cwa and Cwb climatic types (Alvares et al. 2013). 

The mean annual rainfall varies between 650 and 1500 mm. Elevations range 

between 500 and 1100 m above-mean-sea-level in the Eucalyptus stands.  

The Eucalyptus stands used in this study were established between 

October 2003 and October 2012, using clones of the species E. urophylla x E. 

grandis, which typically lead to uniform crown and tree density conditions. The 

stands were established with approximately 1100 trees per hectare, using initial 

spacing of either 3.0 x 3.0 or 3.6 x 2.5 m, and cover more than 6000 ha. 

Intensive soil preparation and weed control have been practised since plantation 

establishment, with crown closure often occurring within the first 18 months 

after planting. 
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Figure 1. Location of the Eucalyptus stands used in this study, Minas Gerais 

state, Brazil. 

 

3. Materials and Methods 

3.1.  Field data 

Field data collection was performed between November 2005 and June 

2017 in 245 plots across the Eucalyptus stands using standard continuous forest 

inventory (CFI) method. The plots were measured annually between 2 and 6 

times, resulting in a total of 1119 plot measurements. The sample plots were 

distributed systematically and located in the field using survey-grade real time 

kinetic (RTK) GPS. A plot size of 25 × 20 m (500 m²) was standard. Within 

each plot, tree diameter at breast height (DBH) of all stems and the total height 

of the first 15 trees with normal stems (without bifurcation or any other defect) 

were measured, as well as the height of dominant trees (the 100 largest diameter 

trees per hectare). From the information collected in the plots, estimates of stand 

volume (in m
3 

ha
-1

) were obtained using standard forest mensuration equations 

for this region. The individual tree volume equations were based on DBH and 
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total height, fitted for each measurement year. All fitted equations showed high 

coefficient of determination (R² > 97%) and low residual standard error (Sxy < 

0.05 m³). The mean annual increment (MAI) was calculated by dividing volume 

at stand level (in m
3 

ha
-1

) by age since tree planting. The plot-based field 

inventory values for the Eucalyptus forest plantation variables are summarized 

in Table 1. 

 

Table 1. Descriptive statistics of the age and growth variables based on 1119 

plot measurements in 19 Eucalyptus plantations in Minas Gerais state, Brazil. 

Variable Mean Sd Range 

Stand age (years) 5.30 1.95 2.00 – 13.25 

Dominant height (m) 23.32 6.40 7.43 – 39.50 

Mean annual increment (m³ ha
-1 

yr
-1

) 34.67 12.64 6.32 – 73.77 

Where Sd = Standard Deviation.  

 

The growth variables used in this study to characterize site productivity 

were maximum mean annual increment (MAImax) and stand site index (SI). The 

MAImax can be defined as the maximum MAI value achieved by the stand. The 

SI of a forest stand is defined as the expected dominant height of the stand at a 

given base age, determined as age 7 years for this study (Packalén, Mehtätalo, 

and Maltamo 2011; Scolforo et al. 2016). First, we tested different age-height 

models to predict SI; the Schumacher anamorphic model (Equation 1) form 

fitted using the Algebraic Difference Approach (ADA) yielded biologically 

accurate predictions across the full range of the available plot data (1119 pairs of 

age-height): 

SI = Hdi
 e

[2.2456 (
1

Ai
 - 

1

Aref
)]

                                                                                 Eq. 1 

Sxy = 1.64 m and 7.13% 
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where SI is the Site Index (m), Hdi
 is the dominant height (m) at Age (A

i
) in 

years, and Aref is the selected reference age for this study (7 years). The 245 

field-sampled plots were then classified into three forest site productivity classes 

(high, medium, and low). These classes were defined by convention with high 

productivity corresponding to SI = 33.5 m (expected dominant height of the 

plots at 7 years varying between 30 and 37 m); medium productivity 

corresponding to SI = 26.5 m (expected dominant height of the plots at 7 years 

varying between 23 and 30 m), and low productivity corresponding to SI = 19.5 

m (expected dominant height of the plots at 7 years varying between 16 and 23 

m). 

 

3.2.  DEM data 

ALOS PALSAR (Advanced Land Observing Satellite - Phase Array 

type L-band Synthetic Aperture Radar) DEM data with a spatial resolution of 

12.5 m were used in this study to quantify the terrain conditions in the 

Eucalyptus plantation areas. Prior to calculation of the terrain attributes, the 

DEM was preprocessed with a standard gap/sink-filling error detection and noise 

removal routine. Several basic terrain attributes, which are indirectly related to 

causative factors controlling tree growth (e.g. heat, moisture, light, and aeration) 

were selected for the site productivity classification. These basic terrain 

attributes included general variables of elevation, slope, aspect (converted to 

linear aspect with a zero value for north facing slopes), total curvature, slope 

position, and slope length (Hengl and Reuter 2009). In addition, several specific 

terrain attributes were computed to characterize more complex geomorphometry 

and hydrological variability (Table 2) (Adams, Barnard, and Loomis 2014).  

First, derivatives of slope were combined with roughness and distance 

measures to create 9 specific terrain attributes: Terrain Roughness Index (TRI), 

Surface Relief Ratio (SRR), Surface Area Ratio (SAR), Compound Topographic 
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Index (CTI), Topographic Wetness Index (TWI), SAGA Topographic Wetness 

Index (SAGA TWI), Integrated Moisture Index (IMI), vertical distance to 

channel network, and Topographic Position Index (TPI). These variables were 

selected to provide insight into site-specific water-, gravity- and wind-field 

conditions expected to vary across the large geographic region of interest. 

Second, slope derivatives were combined with estimates of insolation to create 3 

attributes to characterize mean solar-field conditions: Topographic Openness, 

Site Exposure Index (SEI), and Heat Load Index (HLI) (Mohamedou, Tokola, 

and Eerikäinen 2017).  

Overall, TRI, SRR, and SAR are interpreted as measures of landscape 

topographic roughness and heterogeneity (Riley, DeGloria, and Elliot 1999; 

Jenness 2004), whereas CTI, TWI, SAGA TWI, and IMI are used as measures to 

quantify the balance between water accumulation and drainage conditions at the 

local scale, and express topographic control on hydrological processes and water 

availability (Hengl and Reuter 2009). Topographic Openness is a non-local 

summary of the topographic dominance or enclosure of any location in an 

irregular surface (Yokoyama, Shlrasawa, and Pike 2002), and can be interpreted 

for convex and concave forms (Prima and Yoshida 2010). For example, local 

ridges are represented by positive topographic openness and local valleys by 

negative topographic openness (Yokoyama, Shlrasawa, and Pike 2002). SEI 

represents relative solar exposure (Balice et al., 2000), and HLI is a measure of 

the local topography and an indirect approximation of temperature related to 

insolation conditions (McCune and Keon 2002). All geomorphometric attributes 

were calculated using either the SAGA GIS software package (v. 5.0.0) or the 

Geomorphometry and Gradient Metrics Toolbox v2.0 (Evans et al., 2014).  
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Table 2. List of specific terrain attributes used to predict forest site productivity 

and maximum mean annual increment (MAImax) (Adapted from Franklin and 

Ahmed (2017)). 

Variables Description (Equation) 

Terrain Roughness 

Index TRI=Y [∑(Xij-X00)
2
]

1
2
 

Surface Relief Ratio  SRR= (X(mean)-X(min)) / (X(max)-X(min)) 

Surface Area Ratio  SAR= Surface area/planimetric area 

Topographic Openness  Linear slope, aspect, roughness index 

Site Exposure Index  SEI= slope*cos (π
(aspect-180)

180
) 

Compound 

Topographic Index 
 CTI= ln (

Area Value

tan(β)
) 

Topographic Wetness 

Index 
 TWI= ln (

Specific Catchment Area

tan(β)
) 

SAGA Topographic 

Wetness Index 
 SAGA TWI= ln (

Modified Catchment Area

tan(β)
) 

Heat Load Index  HLI= 
1- cos(aspect - 45)

2
 

Integrated Moisture 

Index 
IMI=SRP(w0.4)+FA(w0.3)+SWC(w0.2)+CL(w0.1) 

Topographic Position 

Index 
 TPI=X0-X(mean) 

Where: Xij = elevation of each neighbor cell to cell (00); X0 = elevation at cell (0); 

X(mean), X(max), and X(min) = mean, maximum, and minimum elevations, 

respectively; β = local slope gradient, in degrees; SRP = solar radiation potential; FA = 

flow accumulation of water downslope; SWC = total available water capacity of soil; CL 

= curvature of the landscape; w = weight. 

 

3.3.  Climate data 

Climate data were obtained from the WorldClim dataset (Fick and 

Hijmans 2017), which consists of gridded annual mean values covering the 

period between 1970 and 2000. The dataset provides interpolated climate layers 

with a spatial resolution of approximately 1 km
2
 for 19 bioclimatic variables 
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based on historical data: Annual mean temperature (BIO1 – °C), Mean diurnal 

range (BIO2 – °C), Isothermality (BIO3 – °C), Temperature seasonality (BIO4 – 

°C), Maximum Temperature of Warmest Month (BIO5 – °C), Minimum 

Temperature of Coldest Month (BIO6 – °C), Temperature Annual Range (BIO7 

– °C), Mean Temperature of Wettest Quarter (BIO8 – °C), Mean Temperature of 

Driest Quarter (BIO9 – °C), Mean Temperature of Warmest Quarter (BIO10 – 

°C), Mean Temperature of Coldest Quarter (BIO11 – °C), Annual Precipitation 

(BIO12 – mm), Precipitation of Wettest Month (BIO13 – mm), Precipitation of 

Driest Month (BIO14 – mm), Precipitation Seasonality (BIO15 – mm), 

Precipitation of Wettest Quarter (BIO16 – mm), Precipitation of Driest Quarter 

(BIO17 – mm), Precipitation of Warmest Quarter (BIO18 – mm), and 

Precipitation of Coldest Quarter (BIO19 – mm). These variables represent 

patterns found in monthly weather station data and the environmental gradient of 

the study area (Fick and Hijmans 2017). 

 

3.4.  Random Forest algorithm 

The Random Forest algorithm (RF) (Breiman 2001) was used in both 

regression and classifier form in this study. This routine provides fast, flexible, 

robust and accurate predictive capabilities for high-dimensional digital datasets 

(Belgiu and Drăgu 2016; Ismail and Mutanga 2010; Gao et al. 2016; Zhang et al. 

2018). 

 

3.4.1. Site productivity classification 

The Random Forest (RF) classification algorithm was implemented to 

develop a regression tree ensemble model to predict forest site productivity for 

the study area using the DEM-derived terrain attributes in addition to the 

WorldClim bioclimatic variables. The total of 245 field-sampled plots was 

divided randomly into 70% (172 plots) and 30% (73 plots) for training and 
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validation of the RF classifier, respectively. We used 500 decision trees in each 

RF implementation following preliminary tests of classifier performance, 

whereas the number of variables randomly sampled at each split was equal to the 

square root of the number of variables. Site productivity classification accuracy 

was evaluated in standard confusion matrices with overall and individual class 

accuracies and estimates of omission/commission errors for each classifier run 

(Congalton and Green, 1999). The overall accuracy is computed by dividing the 

total number of correct results by the total number of samples in the error 

matrix. The producer’s accuracy indicates the probability of a reference area 

being correctly classified and is a measure of omission error, whereas the user’s 

accuracy indicates the probability of an area classified on the map actually 

represents that class on the ground, and is a measure of commission error.  

 

3.4.2. Maximum mean annual increment estimation 

The Random Forest (RF) regression algorithm was used to model and 

predict the maximum mean annual increment (MAImax) for the study area using 

as predictive variables the DEM-derived data (terrain attributes) and WorldClim 

dataset (bioclimatic variables). The total of 245 field-sampled plots was again 

randomly divided into 70% (172 plots) and 30% (73 plots) for training and 

validation of the RF model, respectively. 400 decision trees were used in each 

RF implementation following preliminary tests of model performance for 

MAImax estimation, whereas the number of variables randomly sampled at each 

split was equal to the square root of the number of variables. The accuracy of 

predicted MAImax was evaluated using the Root Mean Square Error (RMSE), in 

m³ ha
-1 

yr
-1

 and in percentage, calculated based on the field-based inventory 

MAImax estimates with the validation dataset (73 plots).   
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3.4.3. Random Forest Variable Selection and Variable Importance 

A backward stepwise predictor selection was applied for each RF model 

to ensure only predictor variables that decreased the overall model uncertainties 

were used in the models. Accordingly, in each run, 20% of the lower importance 

predictors were removed. Initial tests revealed that this method produced the 

best overall predictive accuracy and allowed us to simplify the modelling 

process by identifying the minimum number of predictors to offer the best 

predictive accuracy (see also Ismail and Mutanga (2010)). Finally, we computed 

the RF Variable Importance metric, based on recursive substitution, enabling the 

most important variables in each model run to be interpreted based on either the 

percentage increase of the mean square error (IncMSE) or the mean decrease of 

accuracy, occurring when that variable was removed from the prediction or 

classification, respectively. Next, the IncMSE or the mean decrease of accuracy 

was normalised by the ratio of the largest IncMSE or mean decrease of accuracy 

(resulting in values between 0 and 1), and multiplied by 100 (Were et al. 2015); 

the higher the average accuracy decrease following variable removal, the higher 

the relative importance of that variable (Breiman 2001). All RF analyses were 

performed using the R software package randomForest (R Core Team, 2017). 

 

4. Results and Discussion 

4.1.  Site productivity classification 

The classification of forest site productivity based on terrain extracted 

from a DEM and bioclimatic variables in Eucalyptus plantations in Minas Gerais 

state, Brazil (Figure 2) yielded good results based on the field validation dataset 

(Table 3). The best RF classifier achieved an overall accuracy of 91.6% and a 

margin of error of 3.3%, which, based on recent comparative studies, are 

excellent results in prediction of site productivity. For example, Bueis et al. 
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(2016) reported an accuracy of 71% using soil, climatic and physiographic 

parameters to predict site index for Scots pine plantations in northern Spain. 

 

Table 3. Table summary of forest site productivity classification accuracy. 

  

Site productivity 

High Medium Low 

Overall  

Accuracy (%) 

Margin of 

Error (%) 

P.A. 

(%) 

U.A. 

(%) 

P.A. 

(%) 

U.A. 

(%) 

P.A. 

(%) 

U.A. 

(%) 

91.55 3.30 95.8 88.5 96.7 93.5 76.5 92.9 

Where: P.A. = Producer’s accuracy, U.A. = User’s accuracy. 

 

Medium productivity sites were the major class in the study area (67%) 

and, as expected, that class was more accurately mapped (producer’s accuracy = 

96.7% with an inclusion error of 6.5%) than the low or high productivity sites. 

High productivity sites were the minor class in the study area (10%). This class 

also presented high producer’s accuracy (95.8%), with an omission error of 

4.2%. Low productivity sites occurred in approximately 23% of the study area, 

and were classified with lower accuracy than the medium and high productivity 

classes, with an omission error of 23.5%. Low omission and commission errors 

are more important in the high and low productivity classes than in the medium 

productivity class, since errors in productivity classification for low and high 

productivity stands generate higher bias in the growth and yield predictions than 

for medium productivity stands (Bravo et al. 2011). Also, the correct 

classification of the poorest stands is considered more important, since such 

areas represent the worst sites to establish Eucalyptus plantations. Spatially-

explicit site productivity maps based on these classes can help  foresters to avoid 

these areas as plantation sites or take precautions to implement adequate 

silvicultural strategies for these sites, such as wider spacings, water conservation 
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techniques and reduction of forest productivity (Theron and Bredenkamp, 2004; 

Bueis et al., 2016; Gonçalves et al., 2017).  

Figure 2 shows the site productivity map created based on terrain 

attributes and bioclimatic variables obtained with the best-performing RF 

classifier. The predominance of the medium productivity class and the minority 

of the high productivity class in the study area, respectively, can be seen. 

Generally, most of the southern and a small portion of the eastern side of the 

study area were characterized by high productivity sites, whereas from the 

central portion to the northern side of the study area, the site productivity was 

frequently low. Medium productive sites were interspersed throughout the study 

area, and occurred especially in the northwestern side of the study area. 

A maximum mean annual increment (MAImax) map of the study area 

covering the 19 Eucalyptus plantations (Figure 3) was based on the best-

performing RF regression model. The comparison between field and predicted 

MAImax (Figure 4) shows that the data were generally distributed along the 1:1 

line, with an RMSE of 6.12 m³ ha
-1

 yr
-1

 (16.15%); however, the predicted 

MAImax tended to overestimate small values and underestimate large values. This 

behavior can also be observed in the MAImax values per productivity class (Table 

4) based on field and predicted data. These results indicate that forest 

productivity is strongly related to site quality, and that terrain attributes and 

bioclimatic variables are useful for estimating potential production and the limits 

imposed by topographic and climatic aspects on productivity of Eucalyptus 

plantations. Estimates of actual production must be based on more detailed local 

data (e.g. vegetation structure and soil attributes) since our approach is based on 

relatively high-resolution spatially-variable geographic datasets to predict 

potential forest productivity at regional scale.  
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Figure 2. Forest site productivity map predicted from terrain attributes and 

bioclimatic variables for the study area located in Minas Gerais state, Brazil.
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Figure 3. Maximum mean annual increment (MAImax) map predicted from 

terrain attributes and bioclimatic variables for the study area located in Minas 

Gerais state, Brazil. 
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Figure 4. Scatterplot of the predicted versus observed maximum mean annual 

increment (MAImax) obtained with the best-performing Random Forest model 

based on terrain attributes and bioclimatic variables in validation samples (73 

plots). A 1:1 line (black, dashed) is provided for reference. The trendline (black, 

solid) is displayed for illustrative purposes only. 

 

Table 4. Descriptive statistics of maximum mean annual increment (MAImax) 

values per productivity class based on field (1119 plot measurements) and 

predicted data for the study area. 

Site Productivity 

MAImax (m³ ha
-1

 yr
-1

) 

Field data Predicted data 

Mean Range Mean Range 

Low 21.41 12.79 - 26.30 31.10 20.05 - 48.79 

Medium 36.01 19.18 - 48.43 37.41 25.13 - 52.79 

High 54.02 44.36 - 73.77 41.75 30.10 - 56.07 

 

The most important variables for site productivity classification and 

maximum mean annual increment (MAImax) prediction in Eucalyptus 

plantations, as measured by the Variable Importance (VI) output of the RF 
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algorithm (Figure 5), were Temperature seasonality (BIO4) and Precipitation of 

Driest Month (BIO14), respectively. These specific climate variables are directly 

related to water availability and periods of drought that play significant roles in 

survival and growth of Eucalyptus trees (Gonçalves et al. 2013; Binkley et al. 

2017). These results are also in accordance with earlier findings where 

temperature and precipitation were among one of the most important drivers for 

the determination of forest site productivity at stand level (Albert and Schmidt 

2010; Yue et al. 2016; Scolforo et al. 2017; Sharma and Parton 2018). 

 Ferraz Filho et al. (2011), Scolforo et al. (2013), and Scolforo et al. 

(2017) found that including climate variables (solar radiation, mean monthly 

precipitation, and/or temperature) improved the fit and predictive accuracy of 

their models for SI prediction in Eucalyptus plantations. However, these studies 

do not take into account the effect of topography on water availability. Although 

precipitation is a dominant factor, it is not the only variable that may affect 

water availability for plant growth (for example see Almeida et al. (2007)). In 

particular, topography may also be taken as decisive factor for influencing water 

availability by impacting the water drainage, air temperature, evapotranspiration, 

and retention capacities of local soils (Laamrani et al. 2014; Mohamedou, 

Tokola, and Eerikäinen 2014), creating variable topoclimatic conditions along 

topographic gradients across complex terrain (Adams, Barnard, and Loomis 

2014; Bennie et al. 2008). 

Elevation and Annual mean temperature (BIO01) were the next most 

important variables for both site productivity classification and MAImax 

prediction. Subsequently, the most important variables included: Negative 

Topographic Openness, Annual Precipitation (BIO12), Isothermality (BIO03), 

Precipitation Seasonality (BIO15), Slope length, HLI, Positive Topographic 

Openness, and TWI (Figure 6). These variables are related with the main drivers 

controlling the forest growth and productivity: light, water, and temperature 
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(Adams, Barnard, and Loomis 2014), and were able to indirectly explain the 

main characteristics of these drivers to determine site productivity in Eucalyptus 

plantations.  

In this interpretation, for our study area, high productivity sites were 

associated with low elevation areas and high annual precipitation, smooth terrain 

with lower heat load index and temperature seasonality, and the highest soil 

moisture content, representing cooler, less exposed, and wetter locations. On the 

other hand, low productivity sites were associated with higher elevation, and 

precipitation and temperature seasonal variability, rough or more variable terrain 

with high heat load index and limited soil moisture content, representing more 

exposed, potentially warmer, and drier locations. In between these extreme 

productivity classes, medium productivity sites were associated with 

intermediate elevation combined with low precipitation seasonality and heat 

load index, representing areas with less variability in water availability to 

Eucalyptus tree growth during the year. 

 

 

Figure 5. Relative importance of the variables as measured by the Variable 

Importance metric in the Random Forest algorithm predicting forest site 

productivity (a) and maximum mean annual increment (MAImax) (b). 
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Figure 6. Terrain attributes and bioclimatic variables selected by Random Forest 

(RF) algorithm for site productivity classification and maximum mean annual 

increment (MAImax) prediction: elevation (a), positive topographic openness (b), 

negative topographic openness (c), slope length (d), Heat Load Index - HLI (e), 

Topographic Wetness Index - TWI (f), annual mean temperature - BIO01 (g), 

isothermality - BIO03 (h), temperature seasonality - BIO04 (i), annual 

precipitation - BIO12 (j), precipitation of driest month -BIO14 (k), and 

precipitation seasonality BIO15 (l). 



179 

 

In this analysis, a nonparametric modeling approach was used to assess 

large-scale variation in productivity of Eucalyptus plantations in Minas Gerais, 

Brazil. Different statistical methods have been used to predict forest productivity 

based on site variables: discriminant analysis (Bravo et al. 2011; Bueis et al. 

2016), classification and regression trees (Díaz-Varela et al. 2011), multiple 

regression (Latta, Temesgen, and Barrett 2009; Sharma, Brunner, and Eid 2012; 

Sharma and Parton 2018). The results of this study demonstrate that it is 

possible to create a reasonably reliable predictive nonparametric model (RF) of 

site productivity from many spatially-variable, geographic variables, especially 

in areas showing high environmental variability, where average productivity 

variation is consequence of climatic and topographic variations at regional scale. 

Such approach is particularly useful when dealing with large geographic regions, 

areas of plantation expansion, newly acquired land, new potential outgrower 

producers or where there is no information about the culture in the local area of 

interest (Marcatti et al. 2017), and constituted a significant first step in 

predicting and mapping forest productivity across Minas Gerais state.  

 

5. Conclusions 

Topographic and climatic effects on potential productivity of Eucalyptus 

plantations were analyzed by Random Forest machine learning algorithm. 

Terrain attributes derived from a DEM and bioclimatic variables correctly 

classified site productivity, with an overall accuracy of 91.6%, and predicted 

maximum mean annual increment (MAImax) with a RMSE of 6.1 m³ ha
-1

 yr
-1

 

(16.2%). 

Temperature seasonality (BIO04), precipitation of the driest month of 

the year (BIO14), elevation, and annual mean temperature (BIO01) emerged as 

major indicators of potential productivity in Eucalyptus plantations in our study 

area, enabling us to discriminate three site productivity classes, and predict the 
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potential maximum mean annual increment (MAImax) for an area of 

approximately 100,690 km² in the northeast, north and central regions of Minas 

Gerais state, Brazil. 

The approach developed here can be used to estimate site productivity 

and potential MAImax at any geographical location, given the availability of 

terrain attributes and bioclimatic variables worldwide, thereby supporting more 

informed forest management decisions. This approach could be also linked to 

climate models to predict how productivity of Eucalyptus plantations would 

change under climate change. 
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