Please use this identifier to cite or link to this item: http://repositorio.ufla.br/jspui/handle/1/28801
Full metadata record
DC FieldValueLanguage
dc.creatorRibeiro, Fabiano-
dc.creatorOpper, Manfred-
dc.date.accessioned2018-03-05T19:32:37Z-
dc.date.available2018-03-05T19:32:37Z-
dc.date.issued2011-04-
dc.identifier.citationRIBEIRO, F.; OPPER, M. Expectation propagation with factorizing distributions: a Gaussian approximation and performance results for simple models. Neural Computation, Cambridge, v. 23, n. 4, p. 1047-1069, Apr. 2011.pt_BR
dc.identifier.urihttps://www.mitpressjournals.org/doi/abs/10.1162/NECO_a_00104?url_ver=Z39.88-2003&rfr_id=ori%3Arid%3Acrossref.org&rfr_dat=cr_pub%3Dpubmedpt_BR
dc.identifier.urihttp://repositorio.ufla.br/jspui/handle/1/28801-
dc.description.abstractWe discuss the expectation propagation (EP) algorithm for approximate Bayesian inference using a factorizing posterior approximation. For neural network models, we use a central limit theorem argument to make EP tractable when the number of parameters is large. For two types of models, we show that EP can achieve optimal generalization performance when data are drawn from a simple distribution.pt_BR
dc.languageen_USpt_BR
dc.publisherMassachusetts Institute of Technologypt_BR
dc.rightsrestrictAccesspt_BR
dc.sourceNeural Computationpt_BR
dc.subjectExpectation propagation algorithmpt_BR
dc.subjectBayesian inferencept_BR
dc.subjectFactorizing posterior approximationpt_BR
dc.subjectNeural network modelspt_BR
dc.subjectAlgoritmo de propagação de expectativapt_BR
dc.subjectInferência Bayesianapt_BR
dc.subjectFatorização da aproximação posteriorpt_BR
dc.subjectModelos de rede neuralpt_BR
dc.titleExpectation propagation with factorizing distributions: a Gaussian approximation and performance results for simple modelspt_BR
dc.typeArtigopt_BR
Appears in Collections:DFI - Artigos publicados em periódicos

Files in This Item:
There are no files associated with this item.


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.