Please use this identifier to cite or link to this item: http://repositorio.ufla.br/jspui/handle/1/59613
Title: Inteligência artificial aplicada ao diagnóstico radiográfico de displasia coxofemoral em cães
Other Titles: Artificial Intelligence Applied to radiographic diagnosis of hip dysplasia in dogs
Authors: Lacreta Junior, Antônio Carlos Cunha
Muzzi , Leonardo Augusto Lopes
Abade, André da Silva
Keywords: Radiologia veterinária
Displasia coxofemoral canina
Inteligência artificial
Diagnóstico por imagem
Redes neurais convolucionais
Diagnóstico assistido por computador
Análise de imagens médicas
Veterinary radiology
Canine hip dysplasia
Artificial intelligence
Imaging diagnosis
Convolutional neural networks
Computer-aided diagnosis
Medical image analysis
Issue Date: 25-Oct-2024
Publisher: Universidade Federal de Lavras
Citation: SILVA, Cinthia Itaborahy Ferreira. Inteligência artificial aplicada ao diagnóstico radiográfico de displasia coxofemoral em cães. 2024. 53 f. Dissertação (Mestrado Acadêmico em Ciências Veterinárias) – Universidade Federal de Lavras, Lavras, 2024.
Abstract: Radiographic imaging is the main diagnostic tool for canine hip dysplasia, through which the degree of the disease is classified and signs of joint laxity, secondary degenerative joint disease and other alterations inherent to the condition are evidenced. However, interpreting these images is a challenging and error-prone task due to variations in breed and sizes, as well as radiographic techniques and positioning. Technologies that combine machine learning, computer vision and medical imaging facilitate disease diagnosis and provide a second opinion for professionals. This study aims to determine the accuracy of a convolutional neural network in detecting normal and abnormal radiographic patterns in hip joints and correctly classifying them among dogs with and without hip dysplasia. The results significantly contributed to creating a groundbreaking national radiographic database aligned with international standards for the classification of canine hip dysplasia. Implementing artificial intelligence tools proved promising, with an average accuracy of 92%, sensitivity of 91%, and specificity of 92%. The ROC curve and AUC further support the model's strong performance, correctly identifying 93% of positive cases.
URI: http://repositorio.ufla.br/jspui/handle/1/59613
Appears in Collections:Ciências Veterinárias - Mestrado (Dissertações)



This item is licensed under a Creative Commons License Creative Commons