Use este identificador para citar ou linkar para este item: http://repositorio.ufla.br/jspui/handle/1/59806
Título: Analysis of count time series: a bayesian GARMA(p, q) approach
Palavras-chave: Autoregressive moving average models
Count data
Generalized linear models
Markov chain Monte Carlo (MCMC)
Time series
Data do documento: 2023
Editor: Austrian Society for Statistics
Citação: PALA, Luiz Otávio de Oliveira; CARVALHO, Marcela de M.; SÁFADI, Thelma. Analysis of count time series: a bayesian GARMA(p, q) approach. Austrian Journal of Statistics, [S.l.], v. 52, p. 131-151, 2023.
Resumo: Extensions of the Autoregressive Moving Average, ARMA(p, q), class for modeling non-Gaussian time series have been proposed in the literature in recent years, being applied in phenomena such as counts and rates. One of them is the Generalized Autoregressive Moving Average, GARMA(p, q), that is supported by the Generalized Linear Models theory and has been studied under the Bayesian perspective. This paper aimed to study models for time series of counts using the Poisson, Negative binomial and Poisson inverse Gaussian distributions, and adopting the Bayesian framework. To do so, we carried out a simulation study and, in addition, we showed a practical application and evaluation of these models by using a set of real data, corresponding to the number of vehicle thefts in Brazil.
URI: http://repositorio.ufla.br/jspui/handle/1/59806
Aparece nas coleções:DES - Artigos publicados em periódicos

Arquivos associados a este item:
Arquivo Descrição TamanhoFormato 
ARTIGO_Analysis of count time series: a bayesian GARMA(p, q) approach.pdf1,01 MBAdobe PDFVisualizar/Abrir


Este item está licenciada sob uma Licença Creative Commons Creative Commons