Please use this identifier to cite or link to this item: http://repositorio.ufla.br/jspui/handle/1/11213
Title: Propriedades e aspectos geométricos de estimadores tipo James-Stein e do estimador de Hartigan
Other Titles: Aspects and geometric properties of James-Stein type estimators and Hartigan estimator
Authors: Chaves, Lucas Monteiro
Souza, Devanil Jaques de
Brighenti, Carla Regina Guimarães
Souza, Devanil Jaques de
Ferreira, Daniel Furtado
Nogueira, Denismar Alves
Costa, Maria do Carmo Pacheco de Toledo
Keywords: Estimador James-Stein
Normal multivariada
Geometria
Método Bayes empírico
James-Stein estimator
Normal multivariate
Geometry
Empirical Bayes method
Issue Date: 1-Jun-2016
Publisher: Universidade Federal de Lavras
Citation: GAJO, C. A. Propriedades e aspectos geométricos de estimadores tipo James-Stein e do estimador de Hartigan. 2016. 156 p. Tese (Doutorado em Estatística e Experimentação Agropecuária)-Universidade Federal de Lavras, Lavras, 2016.
Abstract: The James-Stein estimator is a biased shrinkage estimator with uniformly smaller risk than the risk of the sample mean estimator for the mean of multivariate normal distribution, except in the one-dimensional or two-dimensional cases. In this work we have used more heuristic arguments and intensified the geometric treatment of the theory of James-Stein estimator. New type James-Stein shrinking estimators are proposed and the Mahalanobis metric used to address the James-Stein estimator. . To evaluate the performance of the estimator proposed, in relation to the sample mean estimator, we used the computer simulation by the Monte Carlo method by calculating the mean square error. The result indicates that the new estimator has better performance relative to the sample mean estimator.
URI: http://repositorio.ufla.br/jspui/handle/1/11213
Appears in Collections:Estatística e Experimentação Agropecuária - Doutorado (Teses)



Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.