Buscar

 

RI UFLA (Universidade Federal de Lavras) >
DEX - Departamento de Ciências Exatas >
DEX - Programa de Pós-graduação >
DEX - Estatística e Experimentação Agropecuária - Doutorado (Teses) >

Por favor, utilize esse identificador para citar este item ou usar como link: http://repositorio.ufla.br/jspui/handle/1/11224

Título: Regressão Simplex aplicada a delineamentos de mistura e utilização do Algoritmo Boosting
Título Alternativo: Simplex Regression applied in mixture design and use of Boosting Algorithm
Autor(es): Liska, Gilberto Rodrigues
Lattes: http://lattes.cnpq.br/2217949943647601
Orientador: Cirillo, Marcelo Ângelo
Coorientador: Menezes, Fortunato Silva de
Membro da banca: Menezes, Fortunato Silva de
Membro da banca: Bueno Filho, Júlio Sílvio de Sousa
Membro da banca: Beijo, Luiz Alberto
Membro da banca: Brighenti, Carla Regina Guimarães
Assunto: Modelo Linear Generalizado
Proporção
Algoritmo Boosting
Modelo de Mistura
Região Simplex
Generalized Linear Model
Proportion
Boosting Algorithm
Mixture Model
Simplex Space
Data de Defesa: 19-Mai-2016
Data de publicação: 6-Jun-2016
Agência de Fomento: Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)
Referência: LISKA, G. R. Regressão Simplex aplicada a delineamentos de mistura e utilização do Algoritmo Boosting. 2016. 206 p. Tese (Doutorado em Estatística e Experimentação Agropecuária)-Universidade Federal de Lavras, Lavras, 2016.
Resumo: Na composição deste trabalho estão presentes duas partes. A primeira parte contém a fundamentação teórica do presente estudo. A segunda parte contém dois artigos científicos. No primeiro artigo são abordados dois modelos da classe dos modelos lineares generalizados para analisar um experimento de mistura que consistiu em estudar o efeito de diferentes dietas compostas por gordura, carboidrato e fibra sobre a expressão de tumor nas glândulas mamárias em ratos fêmeas, dada pela proporção de ratos que tiveram a expressão do tumor numa determinada dieta. Experimentos de mistura são caracterizados por apresentarem o efeito da colinearidade e tamanho amostral reduzido. Nesse sentido, assumir normalidade para a resposta a ser maximizada ou minimizada pode ser inadequado. Diante desse fato, são abordadas as principais características dos modelos de regressão logística e simplex. Os modelos foram comparados mediante os critérios de seleção de modelos AIC, BIC e ICOMP, gráficos de envelope simulado para os resíduos dos modelos ajustados, gráficos das razões de chances e seus respectivos intervalos de confiança para cada componente de mistura. Concluiu-se nesse primeiro artigo que o modelo de regressão simplex apresentou melhor qualidade de ajuste e produziu intervalos de confiança para a razão de chances mais precisos. O segundo artigo apresenta o modelo Boosted Simplex Regression, a versão boosting do modelo de regressão simplex, como uma alternativa de aumentar a precisão dos intervalos de confiança para a razão de chances em cada componente de mistura. Para tal, foi utilizado o método de Monte Carlo para a construção dos respectivos intervalos de confiança. Além disso, é apresentado de maneira inovadora o gráfico de envelope simulado para os resíduos do modelo ajustado via algoritmo boosting. Foi possível concluir que o modelo Boosted Simplex Regression se ajustou satisfatoriamente e produziu intervalos de confiança para a razão de chances acurados e ligeiramente mais precisos do que sua versão ajustada pelo método da máxima verossimilhança.
Abstract: In the composition of this work are present two parts. The first part contains the theory used. The second part contains the two articles. The first article examines two models of the class of generalized linear models for analyzing a mixture experiment, which studied the effect of different diets consist of fat, carbohydrate, and fiber on tumor expression in mammary glands of female rats, given by the ratio mice that had tumor expression in a particular diet. Mixture experiments are characterized by having the effect of collinearity and smaller sample size. In this sense, assuming normality for the answer to be maximized or minimized may be inadequate. Given this fact, the main characteristics of logistic regression and simplex models are addressed. The models were compared by the criteria of selection of models AIC, BIC and ICOMP, simulated envelope charts for residuals of adjusted models, odds ratios graphics and their respective confidence intervals for each mixture component. It was concluded that first article that the simplex regression model showed better quality of fit and narrowest confidence intervals for odds ratio. The second article presents the model Boosted Simplex Regression, the boosting version of the simplex regression model, as an alternative to increase the precision of confidence intervals for the odds ratio for each mixture component. For this, we used the Monte Carlo method for the construction of confidence intervals. Moreover, it is presented in an innovative way the envelope simulated chart for residuals of the adjusted model via boosting algorithm. It was concluded that the Boosted Simplex Regression model was adjusted successfully and confidence intervals for the odds ratio were accurate and lightly more precise than the its maximum likelihood version.
Informações adicionais: Arquivo retido a pedido do(a) autor(a) até junho de 2017.
URI: http://repositorio.ufla.br/jspui/handle/1/11224
Publicador: Universidade Federal de Lavras
Idioma: por
Aparece nas coleções: DEX - Estatística e Experimentação Agropecuária - Doutorado (Teses)

Arquivos neste Item:

Não há arquivos associados para este Item.

Itens protegidos por copyright, com todos os direitos reservados, Salvo indicação em contrário.


Mostrar estatísticas

 


DSpace Software Copyright © 2002-2007 MIT and Hewlett-Packard - Feedback