Use este identificador para citar ou linkar para este item:
http://repositorio.ufla.br/jspui/handle/1/11224
Título: | Regressão Simplex aplicada a delineamentos de mistura e utilização do Algoritmo Boosting |
Título(s) alternativo(s): | Simplex Regression applied in mixture design and use of Boosting Algorithm |
Autores: | Cirillo, Marcelo Ângelo Menezes, Fortunato Silva de Menezes, Fortunato Silva de Bueno Filho, Júlio Sílvio de Sousa Beijo, Luiz Alberto Brighenti, Carla Regina Guimarães |
Palavras-chave: | Modelo linear generalizado Proporção Algoritmo boosting Modelo de mistura Região Simplex Generalized linear model Proportion Boosting algorithm Mixture model Simplex space |
Data do documento: | 6-Jun-2016 |
Editor: | Universidade Federal de Lavras |
Citação: | LISKA, G. R. Regressão Simplex aplicada a delineamentos de mistura e utilização do Algoritmo Boosting. 2016. 206 p. Tese (Doutorado em Estatística e Experimentação Agropecuária)-Universidade Federal de Lavras, Lavras, 2016. |
Resumo: | In the composition of this work are present two parts. The first part contains the theory used. The second part contains the two articles. The first article examines two models of the class of generalized linear models for analyzing a mixture experiment, which studied the effect of different diets consist of fat, carbohydrate, and fiber on tumor expression in mammary glands of female rats, given by the ratio mice that had tumor expression in a particular diet. Mixture experiments are characterized by having the effect of collinearity and smaller sample size. In this sense, assuming normality for the answer to be maximized or minimized may be inadequate. Given this fact, the main characteristics of logistic regression and simplex models are addressed. The models were compared by the criteria of selection of models AIC, BIC and ICOMP, simulated envelope charts for residuals of adjusted models, odds ratios graphics and their respective confidence intervals for each mixture component. It was concluded that first article that the simplex regression model showed better quality of fit and narrowest confidence intervals for odds ratio. The second article presents the model Boosted Simplex Regression, the boosting version of the simplex regression model, as an alternative to increase the precision of confidence intervals for the odds ratio for each mixture component. For this, we used the Monte Carlo method for the construction of confidence intervals. Moreover, it is presented in an innovative way the envelope simulated chart for residuals of the adjusted model via boosting algorithm. It was concluded that the Boosted Simplex Regression model was adjusted successfully and confidence intervals for the odds ratio were accurate and lightly more precise than the its maximum likelihood version. |
URI: | http://repositorio.ufla.br/jspui/handle/1/11224 |
Aparece nas coleções: | Estatística e Experimentação Agropecuária - Doutorado (Teses) |
Arquivos associados a este item:
Arquivo | Descrição | Tamanho | Formato | |
---|---|---|---|---|
TESE_Regressão Simplex aplicada a delineamentos de mistura e utilização do Algoritmo Boosting.pdf | 1,75 MB | Adobe PDF | Visualizar/Abrir |
Os itens no repositório estão protegidos por copyright, com todos os direitos reservados, salvo quando é indicado o contrário.