Use este identificador para citar ou linkar para este item:
http://repositorio.ufla.br/jspui/handle/1/15038
Título: | Time complexity of algorithms that update the Sierpinski-like and modified Hilbert curves |
Autor: | Oliveira, Sanderson L. Gonzaga de Kischinhevsky, Maurício |
Palavras-chave: | Time complexity Space-filling curves Hilbert-like curve Sierpinski-like curve |
Publicador: | Universidade Federal de Lavras |
Data: | 1-Mar-2010 |
Referência: | OLIVEIRA, S. L. G. de; KISCHINHEVSKY, M. Time complexity of algorithms that update the Sierpinski-like and modified Hilbert curves. INFOCOMP Journal of Computer Science, Lavras, v. 9, n. 1, p. 90-97, Mar. 2010. |
Descrição: | This paper presents the time complexity of two algorithms that update space-filling curves of adaptively refined domains. The Modified Hilbert (space-filling) Curve was proposed to traverse square-shaped adaptive-refined meshes. Whereas, the Sierpinski-like (space-filling) Curve was proposed in order to traverse triangular-shaped adaptive-refined meshes. Those curves are variations of the namesimilar well-known space-filling curves, i.e. the Hilbert Curve and the Sierpinski Curve. Moreover, they ´are adapted from those classical curves that traverse regular discretized domains. This paper describes the asymptotic tight bounds of algorithms that update the Sierpinski-like and the Modified Hilbert Curves ´ space-filling curves. |
Idioma: | eng |
Aparece nas coleções: | Infocomp |
Arquivos associados a este item:
Arquivo | Descrição | Tamanho | Formato | |
---|---|---|---|---|
ARTIGO_Time complexity of algorithms that update the Sierpinski-like and modified Hilbert curves.pdf | 618,67 kB | Adobe PDF | Visualizar/Abrir |
Este item está licenciada sob uma Licença Creative Commons