Please use this identifier to cite or link to this item: http://repositorio.ufla.br/jspui/handle/1/29792
Title: An intuitive geometric approach to the Gauss Markov theorem
Keywords: Dispersion cloud of points
Gauss–Markov estimator
Orthogonal projection
Nuvem de dispersão de pontos
Estimador de Gauss-Markov
Projeção ortogonal
Issue Date: 2017
Publisher: American Statistical Association
Citation: PEREIRA, L. da S.; CHAVES, L. M.; SOUZA, D. J. de. An intuitive geometric approach to the Gauss Markov theorem. The American Statistician, [S. l.], v. 71, n. 1, p. 67-70, 2017.
Abstract: Algebraic proofs of Gauss–Markov theorem are very disappointing from an intuitive point of view. An alternative is to use geometry that emphasizes the essential statistical ideas behind the result. This article presents a truly geometrical intuitive approach to the theorem, based only in simple geometrical concepts, like linear subspaces and orthogonal projections.
URI: https://amstat.tandfonline.com/doi/abs/10.1080/00031305.2016.1209127#.W09lFtVKgdU
http://repositorio.ufla.br/jspui/handle/1/29792
Appears in Collections:DEX - Artigos publicados em periódicos

Files in This Item:
There are no files associated with this item.


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.