Please use this identifier to cite or link to this item: http://repositorio.ufla.br/jspui/handle/1/40880
Title: Comparison of supervised classifiers in the discrimin ation of preservation areas in a hydroelectric reservoir
Other Titles: Comparação de classificadores supervisionados na discriminação de áreas de preservação em reservatório hidrelétrico
Keywords: Remote sensing
Riparian forests
Kappa coefficient
Overall accuracy
Sensoriamento remoto
Matas ciliares
Coeficiente kappa
Exatidão global
Issue Date: Sep-2019
Publisher: Instituto Federal de Educação, Ciência e Tecnologia do Sul de Minas Gerais - IFSULDEMINAS
Citation: SOARES, J. F. et al. Comparison of supervised classifiers in the discrimin ation of preservation areas in a hydroelectric reservoir. Revista Agrogeoambiental, Pouso Alegre, v. 11, n. 3, p. 150-165, set. 2019.
Abstract: The maintenance of riparian forests is considered one of the main vegetative practices for mitigating the degradation of water resources and is mandatory by law. However, in Brazil there is still a progressive and constant decharacterization of these areas. Facing this reality, it is necessary to broaden researches that identify the occurring changes and provide efficient solutions at a fast pace and low cost. Remote sensing techniques show great application potential in characterizing natural resources. The objective of this work was to map, to characterize the land use and occupation and to verify the best method of high spatial resolution image classification of the Permanent Preservation Areas of the Funil Hydroelectric Power Plant reservoir, located between the municipalities of Lavras, Perdões, Bom Sucesso, Ibituruna, Ijací and Itumirim, in the state of Minas Gerais. The methods used to classify the high spatial resolution image from the Quickbird satellite were visual, object-oriented and pixel-by-pixel. Results showed the best method for mapping land use and occupation of the study area was object-oriented classification using the K-nearest neighbor algorithm, with kappa coefficient of 0.88 and global accuracy of 91.40%.
URI: http://repositorio.ufla.br/jspui/handle/1/40880
Appears in Collections:DEG - Artigos publicados em periódicos



This item is licensed under a Creative Commons License Creative Commons