Please use this identifier to cite or link to this item:
http://repositorio.ufla.br/jspui/handle/1/41767
metadata.artigo.dc.title: | Hypothesis for the management and treatment of the COVID-19-induced acute respiratory distress syndrome and lung injury using mesenchymal stem cell-derived exosomes |
metadata.artigo.dc.creator: | Taghavi-Farahabadi, Mahsa Mahmoudi, Mohammad Soudi, Sara Hashemi, Seyed Mahmoud |
metadata.artigo.dc.subject: | COVID-19 Severe Acute Respiratory Syndrome Coronavirus 2 (SARS-CoV-2) Acute Respiratory Distress Syndrome (ARDS) Mesenchymal stem cell Exosomes |
metadata.artigo.dc.publisher: | Elsevier |
metadata.artigo.dc.date.issued: | Nov-2020 |
metadata.artigo.dc.identifier.citation: | TAGHAVI-FARAHABADI, M. et al. Hypothesis for the management and treatment of the COVID-19-induced acute respiratory distress syndrome and lung injury using mesenchymal stem cell-derived exosomes. Medical Hypotheses, [S.l.], v. 144, Nov. 2020. |
metadata.artigo.dc.description.abstract: | Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) is a member of the coronaviridae that causes respiratory disorders. After infection, large amounts of inflammatory cytokines are secreted, known as the cytokine storm. These cytokines can cause pulmonary damage induced by inflammation resulting in acute respiratory distress syndrome (ARDS), and even death. One of the therapeutic approaches for treatment of ARDS is a mesenchymal stem cell (MSC). MSCs suppress inflammation and reduce lung injury through their immunomodulatory properties. MSCs also have the potential to prevent apoptosis of the lung cells and regenerate them. But our suggestion is using MSCs-derived exosomes. Because these exosomes apply the same immunomodulatory and tissue repair effects of MSCs and they don’t have problems associated to cell maintenance and injections. For investigation the hypothesis, MSCs should be isolated from tissues and characterized. Then, the exosomes should be isolated from the supernatants and characterized. These exosomes should be injected into a transgenic animal for COVID-19. In the final section, lung function assessment, histological examination, micro-CT, differential leukocyte, viral load analysis, cytokine assay, and CRP level analysis can be investigated. COVID-19 treatment is currently focused on supportive therapies and no vaccine has been developed for it. So, numerous researches are needed to find potential therapies. Since the pathogenesis of this disease was identified in previous studies and can cause lung injury with ARDS, investigation of the therapeutic approaches that can suppress inflammation, cytokine storm and ARDS can be helpful in finding a novel therapeutic approach for this disease. |
metadata.artigo.dc.identifier.uri: | https://www.sciencedirect.com/science/article/pii/S0306987720311208 http://repositorio.ufla.br/jspui/handle/1/41767 |
metadata.artigo.dc.language: | en_US |
Appears in Collections: | FCS - Artigos sobre Coronavirus Disease 2019 (COVID-19) |
Files in This Item:
There are no files associated with this item.
Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.