Use este identificador para citar ou linkar para este item: http://repositorio.ufla.br/jspui/handle/1/11071
Título: Sistema computacional para integração de dados na análise de cafés especiais
Título(s) alternativo(s): Computer system for data integration in the analysis of special coffees
Autores: Barbosa, Bruno Henrique
Ferreira, Danton Diego
Borém, Flávio Meira
Vitor, Giovani Bernardes
Palavras-chave: Café - Torração
Análise sensorial
Sistema de visão computacional
Redes neurais artificiais
Banco de dados
Aplicação Android
Coffee - Roasting
Sensory analysis
Computer vision system
Artificial neural networks
Databases
Data do documento: 19-Abr-2016
Editor: Universidade Federal de Lavras
Citação: LEME, D. S. Sistema computacional para integração de dados na análise de cafés especiais. 2016. 140 p. Dissertação (Mestrado em Engenharia de Sistemas e Automação)-Universidade Federal de Lavras, Lavras, 2016.
Resumo: The shade of color of roasted coffee varies in light of the production objective. However, there is an international standard for the degree of roasting used in sensorial analyses, measured by means of a high costing equipment that, in some models, does not allow storing the results in a data integration system. The Computational View systems emerge as alternatives for a quick analysis, storage and integration with other data concerning coffee. Thus, the objective of this work is the construction of a computational view system for identifying the different shades of roasted and milled coffee grains. For this, a conversion of the RGB color standards of digital cameras was performed for parameters L*, a* and b* of each pixel of the digital image, obtaining an average of all pixels of the sample. For creating the computational view system a closed metallic structure, illumination system standardized by LEDs, a digital camera attached in its superior side and processing software of the images implemented with polynomial regression models and artificial neural networks for approximating a function that represents the most accurate roasting degree of the photographed samples were used. For constructing the transformation model of color spaces, a databank of color charts and 150 samples of roasted coffee in different shades for training an artificial neural network were used. With the results obtained, it was verified that the model presents good accuracy with low divergence. Furthermore, Android/iOS applications we developed for registering sac data, physical and sensorial analysis data defined by the American Association of Special Coffees (SCAA). These applications also allow taking the temperature of samples and posting to an integrated platform with low implementation cost if compared to other tools available.
URI: http://repositorio.ufla.br/jspui/handle/1/11071
Aparece nas coleções:Engenharia de Sistemas e automação (Dissertações)

Arquivos associados a este item:
Arquivo Descrição TamanhoFormato 
DISSERTAÇÃO_Sistema computacional para integração de dados na análise de cafés especiais.pdf3,71 MBAdobe PDFVisualizar/Abrir


Os itens no repositório estão protegidos por copyright, com todos os direitos reservados, salvo quando é indicado o contrário.