Use este identificador para citar ou linkar para este item: http://repositorio.ufla.br/jspui/handle/1/15258
Título: Mapeamento automático de queimadas no bioma Cerrado utilizando sensores orbitais
Título(s) alternativo(s): Automatic mapping of wildfires in the Cerrado biome using orbital sensors
Autor : Pereira, Allan Arantes
Lattes: http://lattes.cnpq.br/0338896308181066
Primeiro orientador: Carvalho, Luis Marcelo Tavares de
Primeiro coorientador: Pereira, José Miguel Cardoso Oliveira
Segundo coorientador: Santos, Renata Libonati dos
Primeiro membro da banca: Setzer, Alberto Waingort
Segundo membro da banca: Morelli, Fabiano
Terceiro membro da banca: Pereira, José Miguel Cardoso Oliveira
Quarto membro da banca: Santos, Renata Libonati dos
Palavras-chave: Mapeamento de queimadas
Algoritmo híbrido
Support Vector Machine
Coeficiente Kendall
Wildfire mapping
Hybrid algorithm
Kendall coefficient
Data da publicação: 22-Ago-2017
Agência(s) de fomento: Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)
Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)
Referência: PEREIRA, A. A. Mapeamento automático de queimadas no bioma Cerrado utilizando sensores orbitais. 2017. 215 p. Tese (Doutorado em Engenharia Florestal)-Universidade Federal de Lavras, Lavras, 2017.
Resumo: O objetivo desta tese foi desenvolver um algoritmo automático para mapear queimadas no bioma Cerrado, utilizando sensores orbitais. Para isso, foram desenvolvidos quatro artigos: O primeiro analisou 8 índices espectrais, comumente utilizados para mapear queimadas nas imagens Landsat, avaliados por meio do índice de separabilidade M. O estudo foi realizado em um mosaico de Unidades de Conservação do norte de Minas Gerais. O índice NBR2 obteve maior separabilidade, com o valor do M de 2.5, e foi o mais indicado para mapear queimadas nessa região, em imagens Landsat. No segundo artigo, foi desenvolvido um algoritmo automático para mapear queimadas nas imagens Landsat-8 para a mesma região do artigo 1. Para isso, foi construído um compósito multitemporal de seis imagens Landsat com data do período crítico de queimadas do ano de 2015, com base na escolha do pixel de menor valor do índice NBR2. As amostras de queimadas são coletadas por focos ativos e utilizadas para treinar o classificador de classe única Support Vector Machine (SVM-OC). Foram avaliados três kernel e diferentes combinações d os parâmetros do SVM-OC, para verificar quais os mais adequados no mapeamento das queimadas. O kernel radial apresentou maior acurácia, com um índice kappa com 0.98. Os resultados mostraram que 13% da área queimada mapeada foram cicatrizes sem focos ativos. O terceiro artigo avaliou quatro técnicas de compósitos multitemporais, utilizando imagens PROBA-V, quanto à capacidade de discriminar áreas queimadas e presença de sombras de nuvens. A técnica que utiliza o segundo menor valor de refletância do canal infravermelho próximo (NIR) obteve uma separabilidade pouco menor que a técnica de primeiro menor valor de refletância do NIR (índice M de 1,3 e 1,4 respectivamente), no entanto, apresentou imagens com menos sombras de nuvens, mais apropriada para o mapeamento de queimadas nas imagens PROBA-V. No quarto artigo, foi desenvolvido um algoritmo para mapear queimadas nos compósitos multitemporais PROBA-V, validado com mapas de queimadas em imagens Landsat (referência) e comparados os resultados com o produto MODIS MCD64A1. O produto PROBA-V apresentou uma omissão total de 30% e o MCD64A1 34%. Já os erros de comissão foram menores para o MCD64A1 quando comparado ao PROBA-V (15% e 22% respectivamente). O PROBA-V obteve melhores resultados em todas as cenas analisadas, na correlação das queimadas analisada em uma grade de 10x10 km, calculada através do coeficiente Kendall, mostrando que o algoritmo desenvolvido pode melhorar as estimativas de áreas queimadas no bioma Cerrado.
Abstract: The objective of this dissertation was to develop an automatic algorithm to map wildfires in the cerrado biome using orbital sensors. To do this, four articles were developed. The first analyzed eight spectral indexes, commonly used to map wildfires in Landsat images, evaluated by means of the M separability index. The study was conducted at a Conservation Unit mosaic in northern Minas Gerais, Brazil. The NBR2 index obtained greater separability, with the value of M of 2.5, considered the most indicated to map wildfires in this region by Landsat images. In the second article, an automatic algorithm was developed to map wildfires in Landsat-8 images for the same region as studied in article 1. To do this, a multi-temporal composite of six Landsat images, with date of the critical wildfire period of 2015, based on the pixel choice of the lowest NBR2 index value. The wildfire samples were collected by active hotspots, and used to train the Support Vector Machine (SVM-OC) single class classifier. Three kernel and different combinations of SVM-OC parameters were evaluated in order to verify which were most adequate in mapping wildfires. The radial kernel presented higher accuracy, with kappa index of 0.98. The results showed that 13% of the mapped burnt area were scars with no active hotspots. The third article evaluated four multi-temporal composite techniques, using PROBA-V, images regarding the capacity of discriminating burnt areas and the presence of cloud shadows. The technique that uses the second lowest reflectance value of the near infrared channel (NIR) obtained separability little lower than the technique of the lowest reflectance value of the NIR (M indexes of 1.3 and 1.4, respectively). However, it presented images with less cloud shadows, being considered the most appropriate for mapping wildfires in PROBA-V images. In the fourth article, an algorithm was developed to map wildfires in the PROBA-V multi-temporal composites, validated with wildfire maps in Landsat images (reference), comparing the results with the MODIS MCD64A1 product. The PROBA-V product presented total omission of 30%, while MCD64A1 presented 34%. The commission errors were smaller for MCD64A1 when compared to the PROBA-V (15% and 22%, respectively). PROBA-V obtained the best results in all analyzed scenarios, analyzing the wildfire correlation in a 10x10 km grid, calculated by means of the Kendall coefficient, showing that the developed algorithm can improve the estimates of burnt areas in the cerrado biome.
URI: http://repositorio.ufla.br/jspui/handle/1/15258
Publicador: Universidade Federal de Lavras
Idioma: por
Aparece nas coleções:DCF - Engenharia Florestal - Doutorado (Teses)

Arquivos associados a este item:
Arquivo Descrição TamanhoFormato 
TESE_Mapeamento automático de queimadas no bioma Cerrado utilizando sensores orbitais.pdf4,88 MBAdobe PDFVisualizar/Abrir


Os itens no repositório estão protegidos por copyright, com todos os direitos reservados, salvo quando é indicado o contrário.