Use este identificador para citar ou linkar para este item:
http://repositorio.ufla.br/jspui/handle/1/15299
Título: | Evolving granular neural networks from fuzzy data streams |
Palavras-chave: | Evolving systems Granular computing Information fusion Neurofuzzy networks Online modeling Sistemas em evolução Computação granular Fusão de informação Redes neurofuzzy Modelagem online |
Data do documento: | Fev-2013 |
Editor: | Elsevier |
Citação: | LEITE, D. F.; COSTA, P.; GOMIDE, F. Evolving granular neural networks from fuzzy data streams. Neural Networks, [S. l.], v. 38, p. 1-16, Feb. 2013. |
Resumo: | This paper introduces a granular neural network framework for evolving fuzzy system modeling from fuzzy data streams. The evolving granular neural network (eGNN) is able to handle gradual and abrupt parameter changes typical of nonstationary (online) environments. eGNN builds interpretable multi-sized local models using fuzzy neurons for information fusion. An online incremental learning algorithm develops the neural network structure from the information contained in data streams. We focus on trapezoidal fuzzy intervals and objects with trapezoidal membership function representation. More precisely, the framework considers triangular, interval, and numeric types of data to construct granular fuzzy models as particular arrangements of trapezoids. Application examples in classification and function approximation in material and biomedical engineering are used to evaluate and illustrate the neural network usefulness. Simulation results suggest that the eGNN fuzzy modeling approach can handle fuzzy data successfully and outperforms alternative state-of-the-art approaches in terms of accuracy, transparency and compactness. |
URI: | http://www.sciencedirect.com/science/article/pii/S0893608012002791#! repositorio.ufla.br/jspui/handle/1/15299 |
Aparece nas coleções: | DEG - Artigos publicados em periódicos |
Arquivos associados a este item:
Não existem arquivos associados a este item.
Os itens no repositório estão protegidos por copyright, com todos os direitos reservados, salvo quando é indicado o contrário.