Use este identificador para citar ou linkar para este item: http://repositorio.ufla.br/jspui/handle/1/28820
Título: Modeling of soil penetration resistance using statistical analyses and artificial neural networks
Título(s) alternativo(s): Modelagem da resistência à penetração do solo usando análises estatísticas e redes neurais artificiais
Palavras-chave: Modeling
Soil physical properties
Neural networks
Modelagem
Propriedades físicas do solo
Redes neurais
Data do documento: 2012
Editor: Editora da Universidade Estadual de Maringá - EDUEM
Citação: SANTOS, F. L.; JESUS, V. A. M. de.; VALENTE, D. S. M. Modeling of soil penetration resistance using statistical analyses and artificial neural networks. Acta Scientiarum. Agronomy, Maringá, v. 34, n. 2, p. 219-224, Apr./June 2012.
Resumo: An important factor for the evaluation of an agricultural system's sustainability is the monitoring of soil quality via its physical attributes. The physical attributes of soil, such as soil penetration resistance, can be used to monitor and evaluate the soil's quality. Artificial Neural Networks (ANN) have been employed to solve many problems in agriculture, and the use of this technique can be considered an alternative approach for predicting the penetration resistance produced by the soil's basic properties, such as bulk density and water content. The aim of this work is to perform an analysis of the soil penetration resistance behavior measured from the cone index under different levels of bulk density and water content using statistical analyses, specifically regression analysis and ANN modeling. Both techniques show that soil penetration resistance is associated with soil bulk density and water content. The regression analysis presented a determination coefficient of 0.92 and an RMSE of 0.951, and the ANN modeling presented a determination coefficient of 0.98 and an RMSE of 0.084. The results show that the ANN modeling presented better results than the mathematical model obtained from regression analysis.
URI: http://repositorio.ufla.br/jspui/handle/1/28820
Aparece nas coleções:DEG - Artigos publicados em periódicos

Arquivos associados a este item:
Arquivo Descrição TamanhoFormato 
ARTIGO_Modeling of soil penetration resistance using statistical analyses and artificial neural networks.pdf1,65 MBAdobe PDFVisualizar/Abrir


Este item está licenciada sob uma Licença Creative Commons Creative Commons