Use este identificador para citar ou linkar para este item: http://repositorio.ufla.br/jspui/handle/1/29693
Título: Monitoramento da cultura da soja em agrossistema com espectrorradiômetro orbital de resolução moderada
Título(s) alternativo(s): Soybean crop monitoring in agrisystem with moderate resolution orbital spectroradiometer
Autores: Alves, Marcelo de Carvalho
Silva, Sérgio Henrique Godinho
Volpato, Margarete Marin Lordelo
Palavras-chave: Glycine max L.
Sensoriamento remoto
Índices de vegetação
Normalized difference vegetation index
Filtragem Savitzky-Golay
Remote sensing
vegetation indices
Índice de vegetação de diferença normalizado
Data do documento: 16-Jul-2018
Editor: Universidade Federal de Lavras
Citação: TRINDADE, F. S. Monitoramento da cultura da soja em agrossistema com espectrorradiômetro orbital de resolução moderada. 2018. 86 p. Dissertação (Mestrado em Engenharia Agrícola)-Universidade Federal de Lavras, Lavras, 2018.
Resumo: The techniques of remote sensing that use vegetation indices (VI's) can help in the study of spatial and temporal patterns of soybean (Glycine max L. Merr.), and associated to the edaphoclimatic attributes, cano also enable the economical use of inputs in order to provide higher grain yield and less impact on agrosystems. This study aimed to evaluate the spectral and temporal relationships of the MODIS sensor with normalized difference vegetation index (NDVI) and enhanced vegetation index (EVI) with grain yield, relief, texture and soil organic matter (MOS), during the phenological cycle of soybean in Campo Verde (MT) in the 2012/2013 harvest, identifying the best phenological stages to generate predictive models on soil attributes variability and productivity prediction. The EVI / NDVI of the MODIS orbital sensor products (MOD13Q1 and MYD13Q1) and the Savitzky-Golay (SG) filtering for noise correction (anomalous values) present in time series of these VI’s were used. Pearson (r) correlation was made considering P ≤ 0.05 between the variables using two methods of SG filtering in the time series of the phenological cycle. The SG filtering corrected the interference present in the series, and improved the correlation of the EVI with the physical attributes of the soil. The coefficients of determination (R²) of EVI in the R1 stage (56 days after germination) with SOM, clay, silt and sand were, R² = 0.77; 0.75; 0.74; 0.75, respectively. With NDVI in the phenological stage R2 (64 days after germination) it was obtained R² = 0.44 with the productivity. The SG filtering was a necessary tool to study the noises present in the time series of the VI's. From the MODIS image and the information of the phenological stage with greater spectral correlation with the soil attributes, it is possible to perform predictive modeling.
URI: http://repositorio.ufla.br/jspui/handle/1/29693
Aparece nas coleções:Engenharia Agrícola - Mestrado (Dissertações)



Os itens no repositório estão protegidos por copyright, com todos os direitos reservados, salvo quando é indicado o contrário.