Use este identificador para citar ou linkar para este item:
http://repositorio.ufla.br/jspui/handle/1/29961
Título: | Adjusting the Scott-Knott cluster analyses for unbalanced designs |
Palavras-chave: | Type I error rate Unequal number of observations Monte Carlo simulations Means clustering procedures |
Data do documento: | 2017 |
Editor: | Crop Breeding and Applied Biotechnology |
Citação: | CONRADO, T. V. et al. Adjusting the Scott-Knott cluster analyses for unbalanced designs. Crop Breeding and Applied Biotechnology, Viçosa, MG, v. 17, n. 1, p. 1-9, 2017. |
Resumo: | The Scott-Knott cluster analysis is an alternative approach to mean comparisons with high power and no subset overlapping. It is well suited for the statistical challenges in agronomy associated with testing new cultivars, crop treatments, or methods. The original Scott-Knott test was developed to be used under balanced designs; therefore, the loss of a single plot can significantly increase the rate of type I error. In order to avoid type I error inflation from missing plots, we propose an adjustment that maintains power similar to the original test while adding error protection. The proposed adjustment was validated from more than 40 million simulated experiments following the Monte Carlo method. The results indicate a minimal loss of power with a satisfactory type I error control, while keeping the features of the original procedure. A user-friendly SAS macro is provided for this analysis. |
URI: | http://repositorio.ufla.br/jspui/handle/1/29961 |
Aparece nas coleções: | DAG - Artigos publicados em periódicos DES - Artigos publicados em periódicos |
Arquivos associados a este item:
Arquivo | Descrição | Tamanho | Formato | |
---|---|---|---|---|
ARTIGO_Adjusting the Scott-Knott cluster analyses for.pdf | 657,2 kB | Adobe PDF | Visualizar/Abrir |
Este item está licenciada sob uma Licença Creative Commons