Please use this identifier to cite or link to this item: http://repositorio.ufla.br/jspui/handle/1/29971
metadata.artigo.dc.title: Early histological, hormonal, and molecular changes during pineapple (Ananas comosus (L.) Merrill) artificial flowering induction
metadata.artigo.dc.creator: Ávila Espinosa, Maita Eulalia
Moreira, Rafael Oliveira
Lima, André Almeida
Ságio, Solange Aparecida
Barreto, Horllys Gomes
Pérez Luiz, Sara Lazara
Aragón Abreu, Carlos Eduardo
Yanes-Paz, Ermis
Ruíz, Yanelis Capdesuñer
González-Olmedo, Justo Lorenzo
Chalfun-Júnior, Antonio
metadata.artigo.dc.subject: Ethrel®48
Ethylene
Gibberellins
Apical meristem
RT-qPCR
DELLA proteins
metadata.artigo.dc.publisher: Elsevier
metadata.artigo.dc.date.issued: Feb-2017
metadata.artigo.dc.identifier.citation: ÁVILA ESPINOSA, M. E. et al. Early histological, hormonal, and molecular changes during pineapple (Ananas comosus (L.) Merrill) artificial flowering induction. Journal of Plant Physiology, [S.l.], v. 209, p. 11-19, Feb. 2017.
metadata.artigo.dc.description.abstract: Natural flowering can cause serious scheduling problems in the pineapple (Ananas comosus) industry and increase harvest costs. Pineapple flowering is thought to be triggered by increased ethylene levels and artificial forcing of pineapple flowering is a common practice to promote flowering synchronisation. However, little is known about the early hormonal and molecular changes of pineapple flowering induction and development. Here, we aimed to analyse the molecular, hormonal, and histological changes during artificial pineapple flowering by Ethrel®48 treatment. Histological analyses of the shoot apical meristem, leaf gibberellic acid (GA3), and ethylene quantification were carried out during the first 72 h after Ethrel®48 treatment. Expression profiles from ethylene biosynthesis (AcACS2 and AcACO1), gibberellin metabolism (AcGA2-ox1 and AcDELLA1), and flower development (FT-like gene (AcFT), LFY-like gene (AcLFY), and a PISTILLATA-like gene (AcPI)) genes were analysed during the first 24 h after Ethrel®48 treatment. Differentiation processes of the shoot apical meristem into flower buds were already present in the first 72 h after Ethrel®48 treatment. Ethrel®48 lead to a reduction in GA3 levels, probably triggered by elevated ethylene levels and the positive regulation AcGA2-ox1. AcLFY activation upon Ethrel®48 may also have contributed to the reduction of GA3 levels and, along with the up-regulation of AcPI, are probably associated with the flower induction activation. AcFT and AcDELLA1 do not seem to be regulated by GA3 and ethylene. Decreased GA3 and increased ethylene levels suggest an accumulation of AcDELLA1, which may display an important role in pineapple flowering induction. Thus, this study shows that molecular, hormonal, and histological changes are present right after Ethrel®48 treatment, providing new insights into how pineapple flowering occurs under natural conditions.
metadata.artigo.dc.identifier.uri: https://www.sciencedirect.com/science/article/pii/S0176161716302656
http://repositorio.ufla.br/jspui/handle/1/29971
metadata.artigo.dc.language: en_US
Appears in Collections:DBI - Artigos publicados em periódicos

Files in This Item:
There are no files associated with this item.


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.