Use este identificador para citar ou linkar para este item:
http://repositorio.ufla.br/jspui/handle/1/31438
Título: | Quantifying intraclass correlations for count and time‐to‐event data |
Palavras-chave: | Generalized linear mixed model Intraclass correlation coefficient (ICC) Overdispersion Poisson distribution Weibull distribution |
Data do documento: | 2016 |
Editor: | Wiley |
Citação: | OLIVEIRA, I. R. C. et al. Quantifying intraclass correlations for count and time‐to‐event data. Biometrical Journal, [S.l.], v. 58, n. 4, p. 852-867, July 2016. |
Resumo: | The intraclass correlation is commonly used with clustered data. It is often estimated based on fitting a model to hierarchical data and it leads, in turn, to several concepts such as reliability, heritability, inter‐rater agreement, etc. For data where linear models can be used, such measures can be defined as ratios of variance components. Matters are more difficult for non‐Gaussian outcomes. The focus here is on count and time‐to‐event outcomes where so‐called combined models are used, extending generalized linear mixed models, to describe the data. These models combine normal and gamma random effects to allow for both correlation due to data hierarchies as well as for overdispersion. Furthermore, because the models admit closed‐form expressions for the means, variances, higher moments, and even the joint marginal distribution, it is demonstrated that closed forms of intraclass correlations exist. The proposed methodology is illustrated using data from agricultural and livestock studies. |
URI: | https://onlinelibrary.wiley.com/doi/10.1002/bimj.201500093 http://repositorio.ufla.br/jspui/handle/1/31438 |
Aparece nas coleções: | DES - Artigos publicados em periódicos |
Arquivos associados a este item:
Não existem arquivos associados a este item.
Os itens no repositório estão protegidos por copyright, com todos os direitos reservados, salvo quando é indicado o contrário.