Use este identificador para citar ou linkar para este item:
http://repositorio.ufla.br/jspui/handle/1/33430
Título: | Remote sensing and geostatistics applied to post-stratification of eucalyptus stands |
Palavras-chave: | Forest inventory Kriging Normalized difference vegetation index Inventário florestal Krigagem Índice de vegetação de diferença normalizado |
Data do documento: | 2018 |
Editor: | FLORAM |
Citação: | OLIVEIRA, I. M. S. de et al. Remote sensing and geostatistics applied to post-stratification of eucalyptus stands. Floresta e Ambiente, Seropédica, v. 25, n. 3, p. 1-11, 2018. DOI: http://dx.doi.org/10.1590/2179-8087.058616. |
Resumo: | Brazil has many rural properties with unmanaged eucalyptus stands. These plantations are heterogeneous, presenting different tree sizes, advanced ages, and large wood volumes that can be quantified using forest inventories. The prediction error of dendrometric variables, mainly in highly heterogeneous areas, can be associated with inadequate forest inventory procedures, i.e. low intensity of sampling plots. However, a larger number of plots increases the cost of inventorying. Therefore, a promising alternative is forest stratification into homogeneous sub areas. Accordingly, the aim of this study was to analyze the reduction of volume estimate errors by post-stratification procedures. We used the normalized difference vegetation index (NDVI) derived from Landsat 8 and Spot 6 images and geostatistical techniques, such as kriging the volume (V) and diameter at breast height (DBH). The most precise method to estimate the total volume was the stratified random sampling (STS), based on geostatistical interpolation, using the DBH (error lower than 10%). |
URI: | http://repositorio.ufla.br/jspui/handle/1/33430 |
Aparece nas coleções: | DCF - Artigos publicados em periódicos |
Arquivos associados a este item:
Arquivo | Descrição | Tamanho | Formato | |
---|---|---|---|---|
ARTIGO_Remote sensing and geostatistics applied to post-stratification of eucalyptus stands.pdf | 3,05 MB | Adobe PDF | Visualizar/Abrir |
Este item está licenciada sob uma Licença Creative Commons