Please use this identifier to cite or link to this item: http://repositorio.ufla.br/jspui/handle/1/33940
metadata.teses.dc.title: Prediction of soil properties via portable x-ray fluorescence (pXRF) spectrometry in Brazil
metadata.teses.dc.title.alternative: Predição de propriedades do solo via espectrometria portátil de fluorescência de raios-x (pXRF) no Brasil
metadata.teses.dc.creator: Pelegrino, Marcelo Henrique Procópio
metadata.teses.dc.contributor.advisor1: Silva, Sérgio Henrique Godinho
metadata.teses.dc.contributor.referee1: Carvalho , Teotonio Soares de
metadata.teses.dc.contributor.referee2: Santos, Walbert Júnior Reis dos
metadata.teses.dc.subject: Aprendizagem de máquina
Espectrometria de fluorescência de raios-X portátil (pXRF)
Mapeamento digital do solo
Machine learning
Digital soil mapping
metadata.teses.dc.date.issued: 29-Apr-2019
metadata.teses.dc.description.sponsorship: Fundação de Amparo à Pesquisa do Estado de Minas Gerais (FAPEMIG)
metadata.teses.dc.identifier.citation: PELEGRINO, M. H. P. Prediction of soil properties via portable x-ray fluorescence (pXRF) spectrometry in Brazil. 2019. 88 p. Dissertação (Mestrado em Ciência do Solo) – Universidade Federal de Lavras, Lavras, 2019.
metadata.teses.dc.description.resumo: Os solos são o principal substrato para a produção de alimentos. A crescente demanda e a pressão ambiental impõem maiores produtividades, rentabilidade e mitigação dos impactos ambientais nas etapas e técnicas de produção. Dessa ótica, é nítida a importância de se conhecer as propriedades químicas, físicas e biológicas dos solos. Para a agricultura, conhecer melhor a fertilidade dos solos possibilita um uso mais racional dos recursos e insumos no planejamento das culturas. Entretanto, a aquisição desse conhecimento requer amostragens e análises de solo, que aumentam em número e volume na medida em que se refina o conhecimento, o que torna o processo caro. Além disso, a usual abordagem pontual de amostragem limita a compreensão da variabilidade espacial e temporal das propriedades dos solos. Neste sentido, a aquisição de dados de sensores remotos (e.g., imagens de satélite) e próximos (e.g., espectrômetros portáteis), tem refinado e complementado o conhecimento das propriedades dos solos através da modelagem computacional. Como fonte amplamente difundida em modelagens ambientais, têm-se os atributos de terreno (p.ex., índice topográfico de umidade) facilmente obtidos a partir de modelos digitais de elevação (DEM) em ambientes SIG. Em relação aos sensores próximos a espectrometria de fluorescência de raios-X portátil (pXRF) tem como vantagens a facilidade, rapidez e a não geração de resíduos em sua operação, além das vantagens de um equipamento portátil. A presente dissertação é dividida em dois capítulos, cujos objetivos são: modelagem e predição espacial dos teores disponíveis dos micronutrientes Fe, Mn, Cu e Zn para as plantas, através de dados de atributos de terreno (TA), dados do pXRF e informação do material de origem (PM), para os horizontes superficiais, subsuperficiais e ambos somados (n = 153), em diferentes combinações e resoluções espaciais, utilizando-se o algoritmo random forest (RF); e modelagem e predição espacial dos teores trocáveis/disponíveis dos macronutrientes P, Ca e K, através dos dados do sensor pXRF somente dos horizontes superficiais (n= 90), utilizando regressão linear simples (LR), regressão polinomial (PR), regressão de potência (PwR), regressão linear múltipla (SMLR) e random forest (RF). A área de estudos é localizada entre as longitudes 501031 e 504192 mE e as latitudes 7651139 e 7653537 mN, fuso 23K, no campus da Universidade Federal de Lavras, com aproximadamente 315 ha. Seus solos têm como materiais de origem gnaisse, gabro e sedimentos aluviais. O clima é Cwa segundo classificação climática de Koppen, com temperaturas médias anuais de 20,4°C e precipitação média anual de 1460 mm. A amostragem foi realizada em um grid regular de 200 m de distância entre locais de coleta. As amostras forma submetidas as análises laboratoriais para determinação dos respectivos nutrientes. Posteriormente, uma porção de cada amostra foi analisada com pXRF modelo S1 Titan LE (Bruker Nano Analytics, Kennewick, WA, USA) no modo Trace durante 60 s em triplicata. Os AT foram gerados com o software SAGA GIS a partir de DEM de 5 e 10 m de resolução. Os dados foram separados em conjuntos de treinamento (70%) e validação (30%), e os modelos foram gerados no software R (RF) e SigmaPlot (LR, PR, PwR e SMLR). Para efeito de análise e comparação entre os modelos foram utilizadas as métricas de coeficiente de determinação (R2), R2 ajustado (R2adj), raiz do erro quadrático médio (RMSE), raiz do erro quadrático médio normalizado (nRMSE) e erro médio (ME) para o primeiro capítulo, e R2, RMSE, erro médio absoluto (MAE) e o desvio residual das predições (RPD) para o segundo. Após a determinação dos melhores modelos, a predição espacial para geração dos mapas de nutrientes disponíveis foi realizada. As variáveis do pXRF quando presentes no modelo, foram espacializadas para toda a área através de interpolação pelo inverso da distância (IDW). Os TA de 10 m foram superiores aos de 5 m para predições. Foi possível obter bons resultados na predição espacial de Fe disponível utilizando somente TA de 10 m (R2 = 0,88; RMSE = 59.97 mg kg-1 e ME = 24.00 mg kg-1) e para os demais com dados pXRF + AT de 10 m + PM (0,85; 29,65 mg kg-1; 9,70 mg kg-1 para Mn, 0,64; 3,11 mg kg-1; 0,71 mg kg-1 para Zn e 0,82; 1,17 mg kg-1; 0.43 mg kg-1 para Cu, respectivamente). Nas predições dos macronutrientes, a abordagem PwR obteve os melhores resultados (R2 = 0,80 e RMSE = 1,63 cmolc dm-3 para o Ca2+ trocável, e 0,53 e 6,92 mg dm-3 para o P disponível). Não foi possível estabelecer correlação entre os teores de K+ disponível e o conteúdo total de K2O fornecido pelo pXRF. Dados de sensores próximos associados a dados de atributos de terreno podem realizar predições de teores trocáveis/disponíveis de nutrientes com elevada acurácia em solos tropicais.
metadata.teses.dc.description.abstract: Soils are the main substrate for food production. Increasing environmental demand and pressure imposes greater productivity, profitability, and mitigation of environmental impacts in the stages and production techniques. From this perspective, the importance of knowing the chemical, physical, and biological soil properties is evident. For agriculture, a better understanding of soil fertility enables a more rational use of resources and inputs in crop planning. However, the acquisition of this knowledge requires soil sampling and analyses, which increases in number and volume as knowledge is refined. This makes the process expensive.. Moreover, the usual point-sampling approach limits understanding of the spatial and temporal variability of soil properties. In this sense, the acquisition of data through remote (e.g., satellite images) and proximal (e.g., portable spectrometers) sensors has refined and complemented the knowledge about soil properties with the aid of computational modeling. As a widely diffused source in environmental modeling, one can easily obtain terrain attributes (e.g., topographic wetness index) from digital elevation models (DEM) in GIS environments. Regarding proximal sensors, the portable X-ray fluorescence (pXRF) spectrometry has the advantages of ease, speed, and non-generation of waste in its operation, as well as the advantages of being portable. The present dissertation is divided in two chapters, whose objectives are: modeling and spatial prediction of the available micronutrients contents Fe, Mn, Cu, and Zn, through data obtained from terrain attributes (TA), pXRF, and parent material information (PM), for surface and subsurface horizons separately and combined (n = 153), in different combinations of datasets and spatial resolution, using the random forest (RF) algorithm; and modeling and spatial prediction of the available levels of the macronutrients P, Ca and K, through the pXRF sensor data for the surface horizon (n= 90), using simple linear regression (LR), polynomial regression (PR), power regression (PwR), multiple linear regression (SMLR) and random forest (RF). The study area is located between longitudes 501031 and 504192 mE and latitudes 7651139 and 7653537 mN, zone 23 K, located on the campus of the Federal University of Lavras, with approximately 315 ha. Its soils are developed from gneiss, gabbro and alluvial sediments. The climate is Cwa according to Köppen classification system, with average annual temperature of 20.4 °C and average annual rainfall of 1.460 mm. Samples were collected on a regular grid design of 200 m between sampling places., Samples were submitted to laboratory analysis to determine the respective nutrients. Subsequently, a portion of each sample was analyzed on a pXRF model S1 Titan LE (Bruker Nano Analytics, Kennewick, WA, USA) in Trace mode for 60 s in triplicate. The TA were generated with the SAGA GIS software from 5 and 10 m resolution DEM. The data were separated into training (70%) and validation sets (30%), and the models were generated in R software (RF) and SigmaPlot (LR, PR, PwR and SMLR). For the purposes of analysis and comparison between the models, we used the coefficient of determination (R2), adjusted R2 (R2adj), root mean squared error (RMSE), normalized root mean squared error (nRMSE) and mean error (ME) for the first chapter, and R2, RMSE, mean absolute error (MAE) and the residual deviation of predictions (RPD) for the second chapter. After determination of the best models, the spatial prediction was followed to generate the available nutrient map. The variables of the pXRF when present in the model were spatialized for the entire area through inverse distance weighting (IDW) interpolation. The 10 m TA were better than the 5 m resolution for predictions. It was possible to obtain good results in the spatial prediction of available Fe using only 10 m TA (R2 = 0.88; RMSE = 59.97 mg kg-1 and ME = 24.00 mg kg-1) and for the others with pXRF + 10 m TA + PM (0.85; 29.65 mg kg-1; 9.70 mg kg-1 for Mn, 0.64; 3.11 mg kg-1; 0.71 mg kg-1 for Zn e 0.82; 1.17 mg kg-1; 0.43 mg kg-1 for Cu, respectively) In the predictions of the macronutrients, the PwR approach obtained the best results (R2 = 0.80 and RMSE = 1.63 cmolc dm-3 for exchangeable Ca2+, and 0.53 and 6.92 mg dm-3 for available P). It was not possible to establish a correlation between the available K+ contents and the total K2O content provided by pXRF. Proximal sensor data associated with TA data can accurately predict exchangeable/available nutrient contents in tropical soils.
metadata.teses.dc.identifier.uri: http://repositorio.ufla.br/jspui/handle/1/33940
metadata.teses.dc.publisher: Universidade Federal de Lavras
metadata.teses.dc.language: por
Appears in Collections:DCS - Ciência do Solo - Mestrado (Dissertações)



Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.