Please use this identifier to cite or link to this item:
metadata.artigo.dc.title: General and specific combining ability in Serrasalmidae
metadata.artigo.dc.creator: Costa, Adriano Carvalho
Botelho, Hortência Aparecida
Gomes, Richardson Cesar da Silva
Campos, Sergio Augusto de Sousa
Reis Neto, Rafael Vilhena
Balestre, Marcio
Prado, Fernanda Dotti do
Hashimoto, Diogo Teruo
Martins, Diego Galetti
Porto‐Foresti, Fábio
Lima, Mário
Freitas, Rilke Tadeu Fonseca de
metadata.artigo.dc.subject: Colossoma macropomum
Diallel crossbreeding
Fish breeding
Piaractus brachypomum
Piaractus mesopotamicus
Round fish
Cruzamento dialélico
Criação de peixes
metadata.artigo.dc.publisher: Wiley 2019
metadata.artigo.dc.identifier.citation: COSTA, A. C. et al. General and specific combining ability in Serrasalmidae. Aquaculture Research, Oxford, v. 50, n. 3, p. 717-724, Mar. 2019.
metadata.artigo.dc.description.abstract: This work was carried out to predict the combining abilities, both general and specific, for performance traits and bodily yields of Serrasalmidae. Ninety‐six 30‐day‐old juveniles were purchased from two commercial fish farms, 12 of each of the following eight genetic groups: pacu, pirapitinga, tambaqui, tambacu, tambatinga, patinga, paqui and piraqui. Six fish from each genetic group were grown in 500‐L fibreglass tanks (two tanks per genetic group) until they were 495 days old. At the end of the growth period fish were weighed, subjected to morphometric analysis and processed to obtain their bodily yields. Two nuclear markers and one mitochondrial marker were used to confirm the identity of the animals. Combining abilities were obtained using the method proposed by Griffing in 1956 (Australian Journal of Biological Science, 4, 463–493) adapted to a mixed models analysis, environmental effects were estimated by the empirical best linear unbiased estimator method and genetic effects (general and specific combining abilities) were estimated with the empirical best linear unbiased predictor. Predictions of the combining abilities of advanced hybrids were obtained by the mixed models mixture method with normal distributions. Tambaqui showed higher general and specific combining abilities than the other groups for most of the variables, making it the most important genetic group. General combining ability makes a greater contribution to phenotypic variance than specific combining ability for most variables, indicating a predominance of genes with an additive effect in the control of evaluated traits.
metadata.artigo.dc.language: en_US
Appears in Collections:DES - Artigos publicados em periódicos

Files in This Item:
There are no files associated with this item.

Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.