Please use this identifier to cite or link to this item: http://repositorio.ufla.br/jspui/handle/1/36412
metadata.teses.dc.title: Classificação da qualidade do sinal de voz em comunicação VoIP utilizando Deep Learning
metadata.teses.dc.title.alternative: Voice signal quality rating in VoIP communication using Deep Learning
metadata.teses.dc.creator: Costa, Lucas Hilário da
metadata.teses.dc.creator.Lattes: http://lattes.cnpq.br/6937330173394659
metadata.teses.dc.contributor.advisor1: Rodríguez, Demóstenes Zegarra
metadata.teses.dc.contributor.advisor-co1: Rosa, Renata Lopes
metadata.teses.dc.contributor.referee1: Ferreira, Danton Diego
metadata.teses.dc.contributor.referee2: Begazo, Dante Coaquira
metadata.teses.dc.subject: Voz sobre IP (VoIP)
Aprendizado de máquina profundo
Qualidade de voz
Aprendizado de máquina
Recomendação ITU-T P.862
Recomendação ITU-T P.563
Recomendação ITU-T P.501
Voice over IP (VoIP)
Deep learning
Voice quality
Machine learning
ITU-T recommendation P.862
ITU-T recommendation P.563
ITU-T recommendation P.501
Voice over Internet Protocol (VoIP)
metadata.teses.dc.date.issued: 22-Aug-2019
metadata.teses.dc.identifier.citation: COSTA, L. H. da. Classificação da qualidade do sinal de voz em comunicação VoIP utilizando Deep Learning. 2019. 94 p. Dissertação (Mestrado em Engenharia de Sistemas e Automação)–Universidade Federal de Lavras, Lavras, 2019.
metadata.teses.dc.description.resumo: Atualmente a Voz sobre IP (VoIP - Voice over IP) é um dos serviços de comunicação mais utilizados, entretanto, sua qualidade está relacionada a diversos fatores externos que ocasionam diversos tipos de degradação do sinal de voz. Nos canais de comunicação, a perda de pacotes afeta significativamente o sinal de voz, fazendo com que a qualidade da comunicação seja menor, afetando diretamente a qualidade de experiência (QoE - Qualityof Experience) do usuário.O objetivo deste trabalho foi a implementação e desenvolvimento de dois modelos de rede Deep Learning (DL) que são capazes de classificar a qualidade do sinal de voz transmitido em uma comunicação VoIP, afetado principalmente pela perda de pacotes. Os modelos propostos foram desenvolvidos utilizando um modelo de rede neural profunda (DNN - Deep Neural Network), onde através da análise do sinal da voz afetada pela taxa de perda de pacotes (PLR - PacketLoss Rate), dos sinais degradados, foi possível classificá-los em quatro classes distintas de acordo com a experiência do usuário. Para a realização dos testes foram preparadas duas bases de dados, contendo cada uma, quatro classes distintas, onde uma foi preparada com os arquivos da base de dados da recomendação ITU-T P.862, com diferentes taxas de perda de pacotes, e a outra base foi preparada com os arquivos da recomendação ITU-T P.501 de acordo com o índice MOS (MeanOpinion Score) de cada arquivo degradado. Para obter as bases de dados foi implementado um programa no MATLAB que degrada arquivos de voz original mudando os valores da taxa de perda de pacotes, após o processamento, os arquivos foram agrupados em quatro classes de acordo com a taxa de perda de pacotes aplicada a cada sinal de voz original.Para a base de dados preparada pelo índice MOS os arquivos degradados foram processados pelo algoritmo da recomendação ITU-T P.862 com o objetivo de determinar o MOS através da comparação do sinal de voz degradado com o sinal original de cada arquivo de áudio e depois agrupados em quatro classes de acordo com o MOS obtido. Para validar os modelos duas bases de dados adicionais foram preparadas contendo arquivos de áudio da base de dados VoxCeleb divididos em quatro classes com 250 arquivos cada, sendo agrupadas pela taxa de PLR e pelo MOS. Os resultados obtidos do modelo utilizando a base de dados preparada pela taxa de perda de pacotes foi de 94% de acurácia na validação e os resultados do modelo para a base de dados preparada pelo MOS foi de 91% de acurácia. O modelo alcançou uma acurácia de 86,96% para a base de dados adicional preparada de acordo com a taxa de perda de pacotes e de 83,29% de acurácia para a base adicional preparada de acordo com o MOS. Para determinar a eficiência do modelo desenvolvido foram comparados os seus resultados com os resultados obtidos pelos algoritmos da recomendações ITU-T P.563 e P.862, onde obteve-se uma média de 53,21% de acerto quando comparamos os resultados da definição do MOS do algoritmo da recomendação ITU-T P.563 com o definido pelo algoritmo da recomendação ITU-T P.862.Através dos resultados obtidos pode-se concluir que os modelos gerados foram capazes de classificar a taxa de perda de pacotes e o índice MOS de forma não intrusiva e com uma ótima taxa de acurácia.Pode-se destacar que quando comparamos os métodos não intrusivos, os resultados obtidos do modelo proposto para o índice MOS que foi de 91% de acurácia foi melhor em comparação dos com os resultados do algoritmo da recomendação ITU-T P.563 que obteve uma taxa 53,21% de acurácia em relação com os resultados do algoritmo intrusivo da recomendação ITU-T P.862.Concluindo assim que o modelo gerado é capaz de determinar o MOS dos arquivos de voz degradados de forma mais eficiente que o algoritmo da recomendação ITU-T P.563. Consequentemente, uma contribuição importante deste trabalho é a apresentação de um modelo de avaliação não intrusivo capaz de identificar a qualidade do sinal de voz em tempo real.
metadata.teses.dc.description.abstract: Voice over IP (VoIP) is currently one of the most widely used communication services; however, its quality is related to several external factors that cause various types of voice signal degradation. In communication channels, packet loss significantly affects the voice signal, causing lower communication quality, directly affecting the user’s quality of experience (QoE). The objective of this work was the implementation and development of two Deep Learning (DL) network models that are able to classify the quality of the voice signal transmitted in a VoIP communication, mainly affected by packet loss. The proposed models were developed using a Deep Neural Network (DNN) model, where through the analysis of the voice signal affected by Packet Loss Rate (PLR) of the degraded signals, it was possible to classify them into four distinct classes according to the user experience. To perform the tests two databases were prepared, each containing four distinct classes, one of which was prepared with the ITU-T P.862 recommendation database files, with different packet loss rates, and the another base was prepared with the ITU-T P.501 recommendation files according to the mean opinion score (MOS) index of each degraded file. To obtain the databases, a program was implemented in MATLAB that degrades original voice files by changing the packet loss rate values. After processing, the files were grouped into four classes according to the packet loss rate applied to each original voice signal. For the database prepared by the MOS index the degraded files were processed by the ITU-T P.862 recommendation algorithm in order to determine the MOS by comparing the degraded voice signal with the original signal of each audio file and then grouped into four classes according to the MOS obtained. To validate the models two additional databases were prepared containing VoxCeleb database audio files divided into four classes with 250 files each, being grouped by PLR rate and MOS. The results obtained from the model using the database prepared by the packet loss rate was 94% accuracy in the validation and the model results for the database prepared by the MOS was 91% accuracy. The model achieved an accuracy of 86.96% for the additional database prepared according to packet loss rate and 83.29% accuracy for the additional database prepared according to MOS. To determine the efficiency of the developed model, its results were compared with the results obtained by the ITU-T recommendations P.563 and P.862 algorithms, where an average of 53.21% accuracy was obtained when comparing the results. MOS definition of the ITU-T P.563 recommendation algorithm with that defined by the ITU-T P.862 recommendation algorithm. From the obtained results it can be concluded that the generated models were able to classify the packet loss rate and the MOS index in a non intrusive way and with an excellent accuracy rate. It can be highlighted that when comparing the non-intrusive methods, the results obtained from the proposed model for the MOS index which was 91% accuracy was better compared to the results from the ITU-T P.563 recommendation algorithm that obtained an accuracy rate of 53.21% compared to the intrusive algorithm results from the ITU-T P.862 recommendation. Thus, the generated model is able to determine the MOS of the degraded voice files more efficiently than the ITU-T P.563 recommendation algorithm. Consequently, an important contribution of this work is the presentation of a non-intrusive evaluation model capable of identifying the real-time voice signal quality.
metadata.teses.dc.identifier.uri: http://repositorio.ufla.br/jspui/handle/1/36412
metadata.teses.dc.publisher: Universidade Federal de Lavras
metadata.teses.dc.language: por
Appears in Collections:DEG - Engenharia de Sistemas e Automação - Mestrado (Dissertações)



Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.