Please use this identifier to cite or link to this item: http://repositorio.ufla.br/jspui/handle/1/37405
metadata.teses.dc.title: Compósitos híbridos: aplicações catalíticas e oxidativas em processos ambientais
metadata.teses.dc.title.alternative: Hybrid composites: catalysts and oxidatives applications in environmental processes
metadata.teses.dc.creator: Chagas, Pricila Maria Batista
metadata.teses.dc.creator.Lattes: http://lattes.cnpq.br/8623676610756371
metadata.teses.dc.contributor.advisor1: Corrêa, Angelita Duarte
metadata.teses.dc.contributor.advisor-co1: Guimarães, Iara do Rosário
metadata.teses.dc.contributor.referee1: Magriotis, Zuy Maria
metadata.teses.dc.contributor.referee2: Costa, Luiz Cláudio Melo
metadata.teses.dc.contributor.referee3: Miranda, Aline Auxiliadora Tireli
metadata.teses.dc.contributor.referee4: Ramalho, Teodorico de Castro
metadata.teses.dc.subject: Óxido de ferro
Quitosana
Corante azul de metileno
Catálise
Iron oxide
Chitosan
Methylene blue dye
Catalysis
metadata.teses.dc.date.issued: 30-Oct-2019
metadata.teses.dc.description.sponsorship: Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)
metadata.teses.dc.identifier.citation: CHAGAS, P. M. B. Compósitos híbridos: aplicações catalíticas e oxidativas em processos ambientais. 2019. Tese (Doutorado em Agroquímica) – Universidade Federal de Lavras, Lavras, 2017.
metadata.teses.dc.description.resumo: As propriedades dos materiais como os óxidos de ferro são diretamente relacionadas com as dimensões e morfologias de suas estruturas. A superfície destes óxidos pode ser modificada pela combinação de componentes orgânicos ou inorgânicos e constituem uma alternativa para a produção de novos materiais multifuncionais com diferentes aplicações. A quitosana (QT) é um polímero que tem sido utilizada amplamente como agente protetor e estabilizador, que pode funcionalizar e melhorar as propriedades adsorventes e catalíticas dos óxidos. Neste trabalho, realizou-se a síntese de óxido de ferro nanoestruturado estabilizado por quitosana para aplicação e a otimização no processo de remoção do Cr(VI) aquoso. Além disso, em uma etapa contínua ao ciclo de adsorção, o compósito híbrido QT-Fe agora com o cromo imobilizado em sua estrutura (QT-FeCr) foi utilizado em uma segunda etapa em processos catalíticos. O material foi sintetizado pela incorporação direta de Fe(II) no gel da quitosana (QT), produzindo as esferas QT-Fe. As caracterizações químicas, morfológicas e estruturais dos materiais foram realizadas utilizando as análises de MEV-EDS, DRX, FTIR, TGA e DSC. O óxido de ferro magnético produzido juntamente com a quitosana foi identificado como magnetita (Fe3O4). As esferas QT-Fe apresentaram maior capacidade de remoção de Cr(VI) aquoso em relação a magnetita pura. A remoção do Cr(VI) mostrou-se dependente do pH, sendo que a maior remoção foi obtida em meio ácido, em que os grupos presentes na superfície dos materiais estão totalmente protonados, facilitando a atração eletrostática da forma aniônica HCrO4 -e, também a redução do Cr(VI) pelo Fe(II) em que a forma reduzida, Cr(III), volta para o meio e é readsorvida. Os estudos cinéticos de adsorção mostraram que o cromo adsorvido segue o modelo pseudossegunda ordem, indicando uma adsorção química. Para descrever dados de equilíbrio, o modelo isotérmico Langmuir foi o que melhor descreveu o processo de adsorção. Ainda para maximizar o processo de adsorção do Cr(VI), foi utilizado um planejamento estatístico (Central Composite Design – CCD) para avaliar como os parâmetros independentes podem ao mesmo tempo interferir na capacidade de adsorção do sistema. As condições otimizadas dos parâmetros (pH, concentração de íons cromo, massa do adsorvente e teor de Fe(II) nas esferas) influenciaram a capacidade de remoção dos íons cromo, sendo que a combinação entre elas foi importante para o favorecimento da cinética de adsorção. As esferas QT-FeCr utilizadas na degradação do corante azul de metileno (AM) mostraram excelente potencial de degradação (93,6%). As cinéticas de degradação do AM foram favorecidas com o aumento da temperatura e do oxidante H2O2. A presença de Cr na superfície do catalisador foi responsável pelo aumento da atividade catalítica, quando comparado com os materiais QT -Fe e magnetita pura. Este material mostrou-se também estável, sem a liberação das fases ativas de Fe ou Cr, com a catálise exclusiva em fase heterogênea. Além disso, as esferas QT-FeCr apresentaram estabilidade catalítica por diversos ciclos reacionais consecutivos com viabilidade técnica e econômica.
metadata.teses.dc.description.abstract: The properties of materials such as iron oxides are directly related to the dimensions and morphologies of their structure. The surface of these oxides can be modified by the combination of organic or inorganic components and are an alternative for the production of new multifunctional materials with different applications. Chitosan (Ch) is a polymer that has been widely used as a protective and stabilizing agent, which can functionalize and improve adsorbent and catalytic properties of oxides. In this study, the synthesis of chitosan-stabilized nanostructured iron oxide was carried out for application and the optimization in the aqueous Cr(VI) removal. In addition, in a continuous step to the adsorption cycle, the Ch-Fe hybrid composite, now with chromium immobilized in its structure (Ch-FeCr), was used in a second step in catalytic processes. The material was synthesized by the direct incorporation of Fe(II) into the chitosan gel, producing Ch-Fe beads. The chemical, morphological and structural characterization of the materials were performed using SEM-EDS, XRD, FTIR, TGA and DSC. The magnetic iron oxide produced together with chitosan was identified as magnetite (Fe3O4). Ch-Fe beads showed higher capacity for the removal of aqueous Cr(VI), relative to pure magnetite. The removal of Cr (VI) was pH-dependent, and the highest removal was obtained in acid medium, in which the groups present on the surface of the materials are fully protonated, facilitating the electrostatic attraction of the HCrO4 -anionic form. besides the reduction of Cr(VI) by Fe(II), in which the reduced form, Cr(III), returns to the medium and is readsorbed. Kinetic studies of adsorption showed that the adsorbed chromium follows the pseudo-second order model, indicating chemical adsorption. To describe equilibrium data, the Langmuir isothermal model best described the adsorption process. In order to maximize the Cr(VI) adsorption process, Central Composite Design (CCD) was used to evaluate how the independent parameters can interfere in the adsorption capacity of the system. The optimum conditions of the parameters (pH, chromium ion concentration, adsorbent mass and Fe(II) content in the beads) influenced the removal capacity of chromium ions, and the combination between them was important for favoring adsorption kinetics. The Ch-FeCr beads used in the degradation of methylene blue (MB) showed excellent degradation potential (93.6%). The degradation kinetics of MB was favored with the increase in temperature and the oxidant H2O2. The presence of Cr on the surface of the catalyst was responsible for the increase in catalytic activity when compared to Ch-Fe and pure magnetite. This material was also stable, without the release of the active phases of Fe or Cr, with exclusive catalysis in heterogeneous phase. In addition, Ch-FeCr beads showed catalytic stability for several consecutive reaction cycles, with technical and economical viability.
metadata.teses.dc.identifier.uri: http://repositorio.ufla.br/jspui/handle/1/37405
metadata.teses.dc.publisher: Universidade Federal de Lavras
metadata.teses.dc.language: por
Appears in Collections:DQI - Agroquímica - Doutorado (Teses)



Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.