Please use this identifier to cite or link to this item:
metadata.artigo.dc.title: Laplace transform and the Mittag-Leffler function
metadata.artigo.dc.creator: Teodoro, G. Sales
Oliveira, E. Capelas de
metadata.artigo.dc.subject: Mittag-Leffler function
Laplace transform
Special functions
metadata.artigo.dc.publisher: Taylor & Francis Online 2014
metadata.artigo.dc.identifier.citation: TEODORO, G. S.; OLIVEIRA, E. C. de. Laplace transform and the Mittag-Leffler function. International Journal of Mathematical Education in Science and Technology, [S.l.], v. 45, n. 4, 2014.
metadata.artigo.dc.description.abstract: The exponential function is solution of a linear differential equation with constant coefficients, and the Mittag-Leffler function is solution of a fractional linear differential equation with constant coefficients. Using infinite series and Laplace transform, we introduce the Mittag-Leffler function as a generalization of the exponential function. Particular cases are recovered.
metadata.artigo.dc.language: en_US
Appears in Collections:DEX - Artigos publicados em periódicos

Files in This Item:
There are no files associated with this item.

Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.