Please use this identifier to cite or link to this item:
metadata.artigo.dc.title: Cellulose modified fibres in cement based composites
metadata.artigo.dc.creator: Tonoli, G. H. D.
Rodrigues Filho, U. P.
Savastano Júnior, H.
Bras, J.
Belgacem, M. N.
Lahr, F. A. Rocco
metadata.artigo.dc.subject: Fibres
Fibre/matrix bond
Surface treatment
metadata.artigo.dc.publisher: Elsevier Dec-2009
metadata.artigo.dc.identifier.citation: TONOLI, G. H. D. et al. Cellulose modified fibres in cement based composites. Composites Part A: Applied Science and Manufacturing, [S.l.], v. 40, n. 12, p. 2046-2053, Dec. 2009.
metadata.artigo.dc.description.abstract: The objective of the present work is to evaluate the effect of surface modification of cellulose pulp fibres on the mechanical and microstructure of fibre–cement composites. Surface modification of the cellulose pulps was performed with Methacryloxypropyltri-methoxysilane (MPTS) and Aminopropyltri-ethoxysilane (APTS) in an attempt to improve their durability into fibre–cement composites. The surface modification showed significant influence on the microstructure of the composites on the fibre–matrix interface and in the mineralization of the fibre lumen as seen by scanning electron microscopy (SEM) with back-scattered electron (BSE) detector. Accelerated ageing cycles decreased modulus of rupture (MOR) and toughness (TE) of the composites. Composites reinforced with MPTS-modified fibres presented fibres free from cement hydration products, while APTS-modified fibres presented accelerated mineralization. Higher mineralization of the fibres led to higher embrittlement of the composite after accelerated ageing cycles. These observations are therefore very useful for understanding the mechanisms of degradation of fibre–cement composites.
metadata.artigo.dc.language: en_US
Appears in Collections:DCF - Artigos publicados em periódicos

Files in This Item:
There are no files associated with this item.

Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.