Please use this identifier to cite or link to this item: http://repositorio.ufla.br/jspui/handle/1/40142
Title: Allometric equations to predict pinus palustris biomass in the southeastern United States
Keywords: Forest management
Regression
Issue Date: 2019
Publisher: Instituto de Florestas da Universidade Federal Rural do Rio de Janeiro
Citation: FARIAS, A. A. et al. Allometric equations to predict pinus palustris biomass in the southeastern United States. Floresta e Ambiente, Seropédica, v. 26, 2019.
Abstract: Pinus palustris Mill. ecosystem is considered one of the most threatened of North America. In this context, studies on biomass quantification are fundamental for forest management plans. Thus, the objective of this study was to develop a set of allometric equations to predict total P. palustris stump-biomass. Biomass data were collected at different locations in the southeastern United States. A total of 119 allometric equations were fitted from the combination of explanatory variables: diameter at breast height (DBH), height (H), age (I), basal area (G), number of trees per hectare (N), site index (S) and quadratic diameter (Dq). One of the models that presented the lowest residual standard error (Sy.x) and root mean square error (RMSE) was ln(W) = -0.9978+0.7082.(H)+0.1009.ln(H.DBH)-0.5310.(N)-0.0003.ln(Dq). Therefore, the insertion of dendrometric variables characteristic of forest stands has great efficacy in biomass prediction for trees from different sites.
URI: http://repositorio.ufla.br/jspui/handle/1/40142
Appears in Collections:DCF - Artigos publicados em periódicos

Files in This Item:
File Description SizeFormat 
ARTIGO_Allometric equations to predict.pdf1,04 MBAdobe PDFView/Open


This item is licensed under a Creative Commons License Creative Commons