Use este identificador para citar ou linkar para este item:
Título: Space-time kriging of precipitation: modeling the large-scale variation with model GAMLSS
Palavras-chave: Water resources
Data do documento: 2019
Editor: Multidisciplinary Digital Publishing Institute
Citação: MEDEIROS, E. S. de et al. Space-time kriging of precipitation: modeling the large-scale variation with model GAMLSS. Water, [S.l], v. 11, n. 11, 2019.
Resumo: Knowing the dynamics of spatial–temporal precipitation distribution is of vital significance for the management of water resources, in highlight, in the northeast region of Brazil (NEB). Several models of large-scale precipitation variability are based on the normal distribution, not taking into consideration the excess of null observations that are prevalent in the daily or even monthly precipitation information of the region under study. This research proposes a novel way of modeling the trend component by using an inflated gamma distribution of zeros. The residuals of this regression are generally space–time dependent and have been modeled by a space–time covariance function. The findings show that the new techniques have provided reliable and precise precipitation estimates, exceeding the techniques used previously. The modeling provided estimates of precipitation in nonsampled locations and unobserved periods, thus serving as a tool to assist the government in improving water management, anticipating society’s needs and preventing water crises.
Aparece nas coleções:DES - Artigos publicados em periódicos
DEX - Artigos publicados em periódicos

Arquivos associados a este item:
Arquivo Descrição TamanhoFormato 
ARTIGO_Space-time kriging of precipitation - modeling the large-scale variation with model GAMLSS.pdf4,04 MBAdobe PDFVisualizar/Abrir

Este item está licenciada sob uma Licença Creative Commons Creative Commons