Use este identificador para citar ou linkar para este item:
http://repositorio.ufla.br/jspui/handle/1/41417
Registro completo de metadados
Campo DC | Valor | Idioma |
---|---|---|
dc.creator | Goodarzi, Mohammad | - |
dc.creator | Freitas, Matheus P. | - |
dc.date.accessioned | 2020-06-14T22:57:38Z | - |
dc.date.available | 2020-06-14T22:57:38Z | - |
dc.date.issued | 2009-03 | - |
dc.identifier.citation | GOODARZI, M.; FREITAS, M. P. On the use of PLS and N-PLS in MIA-QSAR: Azole antifungals. Chemometrics and Intelligent Laboratory Systems, [S.l.], v. 96, n. 1, p. 59-62, Mar. 2009. DOI: 10.1016/j.chemolab.2008.11.007. | pt_BR |
dc.identifier.uri | https://www.sciencedirect.com/science/article/abs/pii/S0169743908002104 | pt_BR |
dc.identifier.uri | http://repositorio.ufla.br/jspui/handle/1/41417 | - |
dc.description.abstract | The antifungal activities of a series of azole derivatives have been modeled by using MIA (multivariate image analysis) descriptors. Two regression methods were applied to correlate such descriptors with the activities column vector: bilinear (classical) and multilinear (N-way) partial least squares - PLS and N-PLS, respectively. The PLS-based model for this series of compounds demonstrated higher predictive ability than the N-PLS-based model, in opposition to some published results for other series of compounds. The activities block was taken in logarithmic scale (pMIC90(cpd)/pMIC90(bifonazole)) and the statistical performance of both models was found to be significantly better than the CoMFA analysis previously established. | pt_BR |
dc.language | en_US | pt_BR |
dc.publisher | Elsevier | pt_BR |
dc.rights | restrictAccess | pt_BR |
dc.source | Chemometrics and Intelligent Laboratory Systems | pt_BR |
dc.subject | MIA-QSAR | pt_BR |
dc.subject | PLS regression | pt_BR |
dc.subject | N-PLS regression | pt_BR |
dc.subject | Antifungals | pt_BR |
dc.subject | Multivariate image analysis applied to quantitative structure-activity relationship (MIA-QSAR) | pt_BR |
dc.subject | Partial least squares regression | pt_BR |
dc.subject | Multiway partial least squares regression | pt_BR |
dc.title | On the use of PLS and N-PLS in MIA-QSAR: Azole antifungals | pt_BR |
dc.type | Artigo | pt_BR |
Aparece nas coleções: | DQI - Artigos publicados em periódicos |
Arquivos associados a este item:
Não existem arquivos associados a este item.
Os itens no repositório estão protegidos por copyright, com todos os direitos reservados, salvo quando é indicado o contrário.