Use este identificador para citar ou linkar para este item: http://repositorio.ufla.br/jspui/handle/1/41417
Título: On the use of PLS and N-PLS in MIA-QSAR: Azole antifungals
Palavras-chave: MIA-QSAR
PLS regression
N-PLS regression
Antifungals
Multivariate image analysis applied to quantitative structure-activity relationship (MIA-QSAR)
Partial least squares regression
Multiway partial least squares regression
Data do documento: Mar-2009
Editor: Elsevier
Citação: GOODARZI, M.; FREITAS, M. P. On the use of PLS and N-PLS in MIA-QSAR: Azole antifungals. Chemometrics and Intelligent Laboratory Systems, [S.l.], v. 96, n. 1, p. 59-62, Mar. 2009. DOI: 10.1016/j.chemolab.2008.11.007.
Resumo: The antifungal activities of a series of azole derivatives have been modeled by using MIA (multivariate image analysis) descriptors. Two regression methods were applied to correlate such descriptors with the activities column vector: bilinear (classical) and multilinear (N-way) partial least squares - PLS and N-PLS, respectively. The PLS-based model for this series of compounds demonstrated higher predictive ability than the N-PLS-based model, in opposition to some published results for other series of compounds. The activities block was taken in logarithmic scale (pMIC90(cpd)/pMIC90(bifonazole)) and the statistical performance of both models was found to be significantly better than the CoMFA analysis previously established.
URI: https://www.sciencedirect.com/science/article/abs/pii/S0169743908002104
http://repositorio.ufla.br/jspui/handle/1/41417
Aparece nas coleções:DQI - Artigos publicados em periódicos

Arquivos associados a este item:
Não existem arquivos associados a este item.


Os itens no repositório estão protegidos por copyright, com todos os direitos reservados, salvo quando é indicado o contrário.