Use este identificador para citar ou linkar para este item: http://repositorio.ufla.br/jspui/handle/1/42431
Título: Real-time voltage sag detection and classification for power quality diagnostics
Palavras-chave: Power quality
Voltage sag segmentation
Voltage sag classification
Distributed generation
Energia - Qualidade
Queda de tensão - Segmentação
Queda de tensão - Classificação
Geração distribuída de energia
Data do documento: Nov-2020
Editor: Elsevier
Citação: NAGATA, E. A. et al. Real-time voltage sag detection and classification for power quality diagnostics. Measurement, [S. I.], v. 164, Nov. 2020. DOI: https://doi.org/10.1016/j.measurement.2020.108097
Resumo: This work proposes an innovative approach to detect, segment and classify voltage sags according to their causes. To detect and segment, Independent Component Analysis is used, with the advantage of being fast and with low computational effort in the operational stage, once it uses only 1/8 cycle of the fundamental component. For classification purposes, Higher-Order Statistics are used for feature extraction and the classifiers are based on Neural Networks and Support Vector Machines. It was tested signal windows of 1, 1/2, 1/4 and 1/8 cycle. For both detection/segmentation design and feature selection, it was used the metaheuristics Teaching-Learning-Based Optimization. Encouraging results were achieved for the simulated signals. In addition, real signals were used to evaluate the detection and segmentation method and good results were achieved in which a detection error rate of 0.86% was achieved.
URI: https://doi.org/10.1016/j.measurement.2020.108097
http://repositorio.ufla.br/jspui/handle/1/42431
Aparece nas coleções:DAT - Artigos publicados em periódicos
DEG - Artigos publicados em periódicos

Arquivos associados a este item:
Não existem arquivos associados a este item.


Os itens no repositório estão protegidos por copyright, com todos os direitos reservados, salvo quando é indicado o contrário.