Use este identificador para citar ou linkar para este item: http://repositorio.ufla.br/jspui/handle/1/42651
Título: Tropical soil pH and sorption complex prediction via portable X-ray fluorescence spectrometry
Palavras-chave: Portable X-ray fluorescence
Base saturation
Cation exchange capacity
Random forest
Cubist
Soil fertility
Espectrômetros de fluorescência de raios X
Saturação de base
Capacidade de troca de cátions
Floresta aleatória
Fertilidade do solo
Data do documento: Mar-2020
Editor: Elsevier
Citação: TEIXEIRA, A. F. dos et al. Tropical soil pH and sorption complex prediction via portable X-ray fluorescence spectrometry. Geoderma, [S. I.], v. 361, Mar. 2020. DOI: https://doi.org/10.1016/j.geoderma.2019.114132.
Resumo: Portable X-ray fluorescence (pXRF) spectrometry delivers results rapidly, at low-cost, and without generating chemical residues. This study aimed to predict soil pH, sum of bases (SB), base saturation percentage (BSP), cation exchange capacity (CEC), and Al saturation (Alsat) of 2017 contrasting Brazilian soil samples through the association of pXRF and three different algorithms [Cubist, Random forest (RF), and stepwise multiple linear regression (SMLR)]. Soil samples were collected from the surface (SURF) and subsurface (SUB) horizons in seven Brazilian states. The prediction models were generated for the SURF and SUB horizons separately and combined (SURF + SUB dataset). Overall, the best predictions were achieved via Cubist followed by RF. For the pH predictions, the model combining SURF and SUB horizons data presented better results. Satisfactory results were achieved for the predictions of SB (validation R2 = 0.86), BSP (validation R2 = 0.81) and Alsat (R2 = 0.76). Moreover, promising results were obtained for predicting pH (R2 = 0.63). Notably, CaO appeared as the most influential variable for soil property prediction models. Overall, pXRF showed great potential for predicting soil fertility properties for diversified tropical soils with low cost, rapidity, and without chemical waste generation.
URI: https://doi.org/10.1016/j.geoderma.2019.114132
http://repositorio.ufla.br/jspui/handle/1/42651
Aparece nas coleções:DCF - Artigos publicados em periódicos
DCS - Artigos publicados em periódicos

Arquivos associados a este item:
Não existem arquivos associados a este item.


Os itens no repositório estão protegidos por copyright, com todos os direitos reservados, salvo quando é indicado o contrário.